这里是《机器学习实战》中第二章KNN的代码部分解释。
KNN最常用的是欧式距离,它没有训练过程,直接就是分类
常用的向量距离度量准则:
欧式距离、曼哈顿距离、切比雪夫距离、马氏距离、巴氏距离、汉明距离、皮尔逊系数、信息熵,部分相关公式与python代码见:
https://blog.csdn.net/weixin_43330946/article/details/105032182
优点:精度高、对异常值不敏感、无数据输入假定(朴素贝叶斯需要假设样本之间独立、高斯分布)。
缺点:计算复杂度高(每一个样本都要计算)、空间复杂度高。
使用数据范围:数值型和标称型。
代码1:
已知4个样本的类别,再输入一个新的样本判断其属于哪一类:
import numpy as np
import operator
def creatDataSet():
group = np.array([[1,101], [5,89], [100,5], [115,8]])
labels = ['爱情片','爱情片','动作片','动作片']
return group, labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#0表示行数
#np.tile表示复制:在列方向上重复inX共1次,行方向上重复inX共dataSetSize次
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2#特征相减后平方
sqDistances = sqDiffMat.sum(axis=1)#sum(0)列相加,sum(1)行相加
distances = sqDistances ** 0.5
sortedDistIndices = distances.argsort()#返回distance中元素从小到大排序后的索引值
#定义一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个样本的相关索引
voteIlable = labels[sortedDistIndices[i]]#取出第i个样本的类别
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
#对获取的类别数量进行排序
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
#key=operator.itemgetter(1)根据字典的值进行排序,
#key=operator.itemgetter(0)根据字典的键进行排序,
#reverse=True降序排序字典
return sortedClassCount[0][0]
if __name__ == '__main__':
group, labels = createDataSet()
test = [101, 20]
test_class = classify0(test , group, labels, 3)
print(test_class)
代码2:
约会网站配对效果判定
import numpy as np
import matplotlib.pyplot as plt
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returMat = np.zeros((numberOFLines, 3))#3个特征
classLableVector = []#返回的分类标签向量
index = 0#行的索引值
for line in arrayOLines:
line = line.strip()#默认删除空白符(包括\n、\r、\t、'')
listFromLine = line.split('\t')#将字符串根据'\t'分隔符进行切片
returnMat[index,:] = listFromLine[0:3]#将数据前三列提取出来放入returnMat中
#根据文本中标记的喜欢的程度进行分类
if listFromLine[-1] == 'didntlike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
def showdatas(datingDataMat, datingLabels):
font = FontProperties(fname=r'sumsun.ttc', size=14)#设置汉字格式,英语字体可以不用
fig, axs = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=Flase, figsize=(13,8))
LabelsColors = []
for i in datingLabels:
if i == 1:
LabelsColors.append('black')
if i == 2:
LabelsColors.append('orange')
if i == 3:
LabelsColors.append('red')
axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors, s=15, alpha=.5)#根据datingDataMat的第一、二列数据画散点数据
axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比', FontProperties=font)
axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数', FontProperties=font)
axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占比', FontProperties=font)
plt.setp(axs0_title_text, size=9, weight='bold', color='red')
plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')
axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors, s=15, alpha=.5)#根据datingDataMat的第一、三列数据画散点数据
axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰淇淋公升数', FontProperties=font)
axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数', FontProperties=font)
axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰淇淋公升数', FontProperties=font)
plt.setp(axs1_title_text, size=9, weight='bold', color='red')
plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')
axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors, s=15, alpha=.5)#根据datingDataMat的第二、三列数据画散点数据
axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰淇淋公升数', FontProperties=font)
axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比', FontProperties=font)
axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰淇淋公升数', FontProperties=font)
plt.setp(axs2_title_text, size=9, weight='bold', color='red')
plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')
plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
#设置图例
didntLike = mlines.line2D([], [], color='black', marker='.', markersize=6, label='didntLike')
smallDoses = mlines.line2D([], [], color='orange', marker='.', markersize=6, label='smallDoses')
largeDoses = mlines.line2D([], [], color='red', marker='.', markersize=6, label='largeDoses')
#添加图例
axs[0][0].legend(handles=[didntLike, smallDoses, largeDoses])
axs[0][1].legend(handles=[didntLike, smallDoses, largeDoses])
axs[1][0].legend(handles=[didntLike, smallDoses, largeDoses])
plt.show()
def autoNorm(dataSet):
minVals = dataSet.min(0)#返回每一列的最小数
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m,1))
normDataSet = normDataSet / np.tile(ranges, (m,1))
return normDataSet, ranges, minVals
def datingClassTest():
filename = 'datingTestSet.txt'
datingDataMat, datingLabels = file2matrix(filename)
hoRatio = 0.10#10%作为测试集
normMat, ranges, minVals = autoNorm(datingDataMat)#数据归一化,返回归一化后的矩阵、数据范围、数据最小值
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
erroeCount = 0.0
for i in range(numTestVecs):
classfierResult = classify0(normMat[i:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 4)
print('分类结果:%d\t真实类别:%d' % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print('错误率:%f%%' % (errorCount / float(numTestVecs) * 100))
def classify0(inX, datsSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndices = distances.argsort()
classCount = {}
for i in range(k):
voteIlable = labels[sortedDistIndices[i]]#取出第i个样本的类别
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def classifyPerson():
resultlist = ['讨厌','有些喜欢','非常喜欢']
percentTats = float(input('玩视频游戏所耗时间百分比:'))
ffMiles = float(input('每年获得的飞行常客里程数:'))
iceCream = float(input('每周消费的冰淇淋公升数'))
filename = 'datingTestSet.txt'
datingDataMat, datingLabels = file2matrix(filename)
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = np.array([percentTats, ffMiles, iceCream])
norminArr = (inArr - minVals) / ranges
classifierResult = classify0(norminArr, normMat, datingLabels, 3)
print('你可能%s这个人' % (resultlist[classifierResult]))
if __name__ == '__main__':
filename = 'datingTestSet.txt'
datingDataMat, datingLabels = file2matrix(filename)
showdatas(datingDataMat, datingLabels)
datingClassTest()
classifyPerson()
代码3:
类似于代码4。
代码4:
手写数字识别
http://archive.ocs.uci.edu/ml(加州大学欧文学院),有许多验证机器学习算法的数据集。
from os import listdir
import numpy as np
form sklearn.neighbors import KNeighborsClassifier as KNN
def img2vextor(filename):
returnVect = np.zeros((1,1024))
#KNN不能处理二维数据,没有位置信息,所以只能输入一维信息,也说明了CNN的强大
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = list('traingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m, 1024))
for i in range(m):
fileNameStr = trainingFileList[i]
classNumber = int(fileNameStr.split('_')[0]#获得分类的数字
hwLabels.append(classNumber)
trainingMat[i:] = ing2vector('trainingDigits/%s' % (fileNameStr))
neigh = KNN(n_neighbors=3, algorithm='auto')
neigh.fit(trainingMat, hwLabels)
testFileList = listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
classNumber = int(fileNameStr.split('_')[0]
vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))
classifierResult = neigh.predict(vectorUnderTest)
print('分类返回结果为%d\t真实结果为%d' % (classifierResult, classNumber))
if (classifierResult != classNumber):
errrorCount += 1.0
print('总共错了%d个数据\n错误率为%f%%' % (errorCount, erroeCount / mTest * 100))
if __name__ == '__main__':
handwritingClassTest()