决定系数

概念引用:http://blog.csdn.net/ytdxyhz/article/details/51730995

在对数据进行线性回归计算之后,我们能够得出相应函数的系数, 那么我们如何知道得出的这个系数对方程结果的影响有强呢?

所以我们用到了一种方法叫 coefficient of determination (决定系数) 来判断 回归方程 拟合的程度.

首先我们先定义几个概念


1. Sum Of Squares Due To Error 

对于第i个观察点, 真实数据的Yi与估算出来的Yi-head的之间的差称为第i个residual, SSE 就是所有观察点的residual的和
2. Total Sum Of Squares


3. Sum Of Squares Due To Regression

通过以上我们能得到以下关于他们三者的关系


决定系数: 判断 回归方程 的拟合程度


(coefficient of determination)决定系数也就是说: 通过回归方程得出的 dependent variable 有 number% 能被 independent variable 所解释. 判断拟合的程度


(Correlation coefficient) 相关系数 : 测试dependent variable 和 independent variable 他们之间的线性关系有多强. 也就是说, independent variable 产生变化时 dependent variable 的变化有多大.

可以反映是正相关还是负相关




Udacity:机器学习纳米工程师学位

如果不能对模型的训练和测试的表现进行量化地评估,我们就很难衡量模型的好坏。通常我们会定义一些衡量标准,这些标准可以通过对某些误差或者拟合程度的计算来得到。在这个项目中,你将通过运算决定系数R2 来量化模型的表现。模型的决定系数是回归分析中十分常用的统计信息,经常被当作衡量模型预测能力好坏的标准。

R2的数值范围从0至1,表示目标变量的预测值和实际值之间的相关程度平方的百分比。一个模型的R2 值为0说明它完全无法预测目标变量;而一个R2 值为1的模型则可以对目标变量进行完美的预测。从0至1之间的数值,则表示该模型中目标变量中有百分之多少能够用特征来解释。_模型也可能出现负值的R2,这种情况下模型所做预测还不如直接计算目标变量的平均值。

# TODO: Import 'r2_score'
from sklearn.metrics import r2_score

def performance_metric(y_true, y_predict):
    """ Calculates and returns the performance score between 
        true and predicted values based on the metric chosen. """
    
    # TODO: Calculate the performance score between 'y_true' and 'y_predict'
    score = r2_score(y_true, y_predict)
    
    # Return the score
    return score

#print performance_metric()


你可能感兴趣的:(——机器学习——)