Darknet_Yolov3模型搭建
YOLO(You only look once)是目前流行的目标检测模型之一,目前最新已经发展到V3版本了,在业界的应用也很广泛。YOLO的特点就是“快”,但由于YOLO对每个网格只预测一个物体,就容易造成漏检,对物体的尺度相对比较敏感,对于尺度变化较大的物体泛化能力较差。YOLO的基本原理是:首先对输入图像划分成7x7的网格,对每个网格预测2个边框,然后根据阈值去除可能性比较低的目标窗口,最后再使用边框合并的方式去除冗余窗口,得出检测结果,如下图:
Darknet卷积模块
Yolo系列的作者把yolo网络叫做Darknet,其实其他神经网络库都已经把卷积层写好了,直接堆叠起来即可。
darknet卷积模块是这个模型里最基本的网络单元,包括卷积层、batch norm(BN)层、激活函数,因此类型命名为
DarknetConv2D_BN_Leaky。原keras实现是卷积层加了L2正则化预防过拟合,Pytorch是把这个操作放到了Optimizer中,所以将在第三部分讲解。
用Pytorch需要注意, 如果训练的时候GPU显存不大,batch size设的很小,这时候就要考虑训练数据集的分布情况。举个例子,加入的batch
size设成了1,但数据每张图差别都很大,这会导致的网络一直在震荡,即使网络能够训练到很低的training loss,
在做预测的时候效果也不好,这主要是BN造成的。因为每批数据的统计量(均值和方差)都不同,而且差别大,这就导致网络训练学不到好的BN层的统计量。如果直接去掉BN层,会发现网络训练非常慢,所以BN层还是要加的,好在Pytorch里的BN有个接口来控制要不要记住每批训练的统计量,即track_running_stats=True,如果训练的batch size不能设特别大,就把它改成False。
卷积层、BN层说完了,激活函数Yolo里用的是0.1的LeakReLU,本实验与ReLU没什么明显的区别。
结构很简答,这部分直接上代码,不画图了。
import torch.nn as nn
import torch
class DarknetConv2D_BN_Leaky(nn.Module):
def __init__(self, numIn, numOut, ksize, stride = 1, padding = 1):
super(DarknetConv2D_BN_Leaky, self).__init__()
self.conv1 = nn.Conv2d(numIn, numOut,
ksize, stride, padding)#regularizer’:
l2(5e-4)
self.bn1 = nn.BatchNorm2d(numOut)
self.leakyReLU = nn.LeakyReLU(0.1)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.leakyReLU(x)
return x
残差模块
残差模块是借鉴了ResNet,残差模块是为了保证深的模型能够得到很好的训练。残差模块ResidualBlock,对外接口有numIn, numOut, numBlock,分别控制模块的输入通道数,输出通道数(卷积核数)和残差模块的堆叠次数。下图是一个numBlock = 2 的模型,注意这里CONV是指上一部分说的Darknet卷积模块,第一个模块(D2)表示是这个卷积模块stride = 2,顺便执行了2倍降采样操作。也就是说特征每经过一个残差模块,分辨率降为原来的一半。
class ResidualBlock(nn.Module):
def __init__(self, numIn, numOut, numBlock):
super(ResidualBlock, self).__init__()
self.numBlock = numBlock
self.dark_conv1 =
DarknetConv2D_BN_Leaky(numIn, numOut, ksize = 3, stride = 2, padding = 1)
self.dark_conv2 = []
for i in range(self.numBlock):
layers = []
layers.append(DarknetConv2D_BN_Leaky(numOut, numOut//2, ksize = 1,
stride = 1, padding = 0))
layers.append(DarknetConv2D_BN_Leaky(numOut//2, numOut, ksize = 3,
stride = 1, padding = 1))
self.dark_conv2.append(nn.Sequential(*layers))
self.dark_conv2 =
nn.ModuleList(self.dark_conv2)
def forward(self, x):
x = self.dark_conv1(x)
for convblock in self.dark_conv2:
residual = x
x = self.convblock(x)
x = x + residual
return x
后端输出模块
后端输出模块是一个三次降采样(三次升采样在下一部分介绍),这三次降采样+三次升采样,类似Encoder-Decoder的FCN模型。这是为了在三种不同尺度上预测。本系列将在voc2007上训练,训练前输入图片要resize到256x256,那么这三种尺度分别是32x32,16x16,8x8。这一部分是因为图片中的目标有大有小,为了保证从不同尺度上找到最好尺度的特征图来进行预测。当然准确提升的同时,由于分辨率有提升,计算量又有一定的增加,索性这里的分辨率不大。下图所示为最后输出模块,这个模块有两个输出,一个是用作下一个模块的输入,一个是用于输出目标检测结果,即坐标、类别和目标置信度,这一部分将在下一篇详细介绍。注意红色的Conv不是DarknetConv2D_BN_Leaky,而是指普通的卷积模块。
class LastLayer(nn.Module):
def __init__(self, numIn, numOut, numOut2):
super(LastLayer, self).__init__()
self.dark_conv1 =
DarknetConv2D_BN_Leaky(numIn, numOut, ksize = 1, stride = 1, padding = 0)
self.dark_conv2 =
DarknetConv2D_BN_Leaky(numOut, numOut*2, ksize = 3, stride = 1, padding = 1)
self.dark_conv3 =
DarknetConv2D_BN_Leaky(numOut*2, numOut, ksize = 1, stride = 1, padding = 0)
self.dark_conv4 =
DarknetConv2D_BN_Leaky(numOut, numOut*2, ksize = 3, stride = 1, padding = 1)
self.dark_conv5 =
DarknetConv2D_BN_Leaky(numOut*2, numOut, ksize = 1, stride = 1, padding = 0)
self.dark_conv6 =
DarknetConv2D_BN_Leaky(numOut, numOut*2, ksize = 3, stride = 1, padding = 1)
self.conv7 = nn.Conv2d(numOut*2,
numOut2, 1, stride = 1, padding = 0)
def forward(self, x):
x = self.dark_conv1(x)
x = self.dark_conv2(x)
x = self.dark_conv3(x)
x = self.dark_conv4(x)
x = self.dark_conv5(x)
y = self.dark_conv6(x)
y = self.conv7(y)
return x,y
Yolov3模型
基本的模块已经定义好,Yolov3的模型就是把这些模型叠加起来。注意下图就是Yolov3的简化模型,数字表示该上一个模块的输出特征尺寸(CxHxW),相应的颜色对应相应的模块。
class Yolov3(nn.Module):
def __init__(self, numAnchor, numClass):
super(Yolov3, self).__init__()
self.dark_conv1 =
DarknetConv2D_BN_Leaky(3, 32, ksize = 3, stride = 1, padding = 1)
self.res1 = ResidualBlock(32, 64, 1)
self.res2 = ResidualBlock(64, 128, 2)
self.res3 = ResidualBlock(128, 256, 8)
self.res4 = ResidualBlock(256, 512, 8)
self.res5 = ResidualBlock(512, 1024, 4)
self.last1 = LastLayer(1024, 512,
numAnchor*(numClass+5))
self.up1 =
nn.Sequential(DarknetConv2D_BN_Leaky(512, 256, ksize = 1, stride = 1, padding =0),
nn.Upsample(scale_factor=2))
self.last2 = LastLayer(768, 256,
numAnchor*(numClass+5))
self.up2 =
nn.Sequential(DarknetConv2D_BN_Leaky(256, 128, ksize = 1, stride = 1, padding =0),
nn.Upsample(scale_factor=2))
self.last3 = LastLayer(384, 128,
numAnchor*(numClass+5))
def forward(self, x):
x = self.dark_conv1(x)#32x256x256
x = self.res1(x)#64x128x128
x = self.res2(x)#128x64x64
x3 = self.res3(x)#256x32x32
x4 = self.res4(x3)#512x16x16
x5 = self.res5(x4)#1024x8x8
x,y1 = self.last1(x5)#512x8x8,
x = self.up1(x)#256x16x16
x = torch.cat((x, x4), 1)#768x16x16
x,y2 = self.last2(x)#256x16x16
x = self.up2(x)#128x32x32
x = torch.cat((x, x3), 1)#384x32x32
x,y3 = self.last3(x)#128x32x32
return y1,y2,y3
到这里模型已经完成,模型代码结构非常清晰。有人可能会问,为什么要这种堆叠方式,其实自己根据新的需求定义网络结构完全可以,但是要注意模型深度增加时如何保证收敛,如何加速模型训练,同时输出特征的分辨率要计算好。