校招操作系统知识

● 请你说一下进程与线程的概念,以及为什么要有进程线程,其中有什么区别,他们各自又是怎么同步的

参考回答:

基本概念:

进程是系统进行资源调度和分配的的基本单位

线程是进程的子任务,是CPU调度和分派的基本单位

线程是操作系统可识别的最小执行和调度单位。每个线程都独自占用一个虚拟处理器:独自的寄存器组,指令计数器和处理器状态。每个线程完成不同的任务,但是共享同一地址空间(也就是同样的动态内存,映射文件,目标代码等等),打开的文件队列和其他内核资源。

进程和线程区别

1.一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程依赖于进程而存在。

2.进程在执行过程中拥有独立的内存单元,而多个线程共享进程的内存。(资源分配给进程,同一进程的所有线程共享该进程的所有资源。同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。)

3.进程是资源分配的最小单位,线程是CPU调度的最小单位;

4.系统开销: 由于在创建或撤消进程时,系统都要为之分配或回收资源,如内存空间、I/o设备等。因此,操作系统所付出的开销将显著地大于在创建或撤消线程时的开销。类似地,在进行进程切换时,涉及到整个当前进程CPU环境的保存以及新被调度运行的进程的CPU环境的设置。而线程切换只须保存和设置少量寄存器的内容,并不涉及存储器管理方面的操作。可见,进程切换的开销也远大于线程切换的开销。

5.通信:由于同一进程中的多个线程具有相同的地址空间,致使它们之间的同步和通信的实现,也变得比较容易。进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。在有的系统中,线程的切换、同步和通信都无须操作系统内核的干预

6.进程编程调试简单可靠性高,但是创建销毁开销大;线程正相反,开销小,切换速度快,但是编程调试相对复杂。

7.进程间不会相互影响 ;线程一个线程挂掉将导致整个进程挂掉

8.进程适应于多核、多机分布;线程适用于多核

 

进程间通信的方式

进程间通信主要包括管道、系统IPC(包括消息队列、信号量、信号、共享内存等)、以及套接字socket。

1.管道:

管道主要包括无名管道和命名管道:管道可用于具有亲缘关系的父子进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信

1.1 普通管道PIPE

1)它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端

2)它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)

3)它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

1.2 命名管道FIFO

1)FIFO可以在无关的进程之间交换数据

2)FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

 

2. 系统IPC:

2.1 消息队列

消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标记。 (消息队列克服了信号传递信息少,管道只能承载无格式字节流以及缓冲区大小受限等特点)具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息;

特点:

1)消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

2)消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

3)消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

 

2.2 信号量semaphore

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器,可以用来控制多个进程对共享资源的访问。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

特点:

1)信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

2)信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

3)每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

4)支持信号量组。

 

2.3 信号signal

信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。

 

2.4 共享内存(Shared Memory)

它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等

特点:

1)共享内存是最快的一种IPC,因为进程是直接对内存进行存取

2)因为多个进程可以同时操作,所以需要进行同步

3)信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问

 

3.套接字SOCKET:

socket也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同主机之间的进程通信。

 

线程间通信的方式:

临界区:通过多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问;

互斥量Synchronized/Lock:采用互斥对象机制,只有拥有互斥对象的线程才有访问公共资源的权限。因为互斥对象只有一个,所以可以保证公共资源不会被多个线程同时访问

信号量Semphare:为控制具有有限数量的用户资源而设计的,它允许多个线程在同一时刻去访问同一个资源,但一般需要限制同一时刻访问此资源的最大线程数目。

事件(信号),Wait/Notify:通过通知操作的方式来保持多线程同步,还可以方便的实现多线程优先级的比较操作

 

● 请你说一说Linux虚拟地址空间

参考回答:

为了防止不同进程同一时刻在物理内存中运行而对物理内存的争夺和践踏,采用了虚拟内存。

虚拟内存技术使得不同进程在运行过程中,它所看到的是自己独自占有了当前系统的4G内存。所有进程共享同一物理内存,每个进程只把自己目前需要的虚拟内存空间映射并存储到物理内存上。 事实上,在每个进程创建加载时,内核只是为进程“创建”了虚拟内存的布局,具体就是初始化进程控制表中内存相关的链表,实际上并不立即就把虚拟内存对应位置的程序数据和代码(比如.text .data段)拷贝到物理内存中,只是建立好虚拟内存和磁盘文件之间的映射就好(叫做存储器映射),等到运行到对应的程序时,才会通过缺页异常,来拷贝数据。还有进程运行过程中,要动态分配内存,比如malloc时,也只是分配了虚拟内存,即为这块虚拟内存对应的页表项做相应设置,当进程真正访问到此数据时,才引发缺页异常。

请求分页系统、请求分段系统和请求段页式系统都是针对虚拟内存的,通过请求实现内存与外存的信息置换。

 

虚拟内存的好处:

1.扩大地址空间;

2.内存保护:每个进程运行在各自的虚拟内存地址空间,互相不能干扰对方。虚存还对特定的内存地址提供写保护,可以防止代码或数据被恶意篡改。

3.公平内存分配。采用了虚存之后,每个进程都相当于有同样大小的虚存空间。

4.当进程通信时,可采用虚存共享的方式实现。

5.当不同的进程使用同样的代码时,比如库文件中的代码,物理内存中可以只存储一份这样的代码,不同的进程只需要把自己的虚拟内存映射过去就可以了,节省内存

6.虚拟内存很适合在多道程序设计系统中使用,许多程序的片段同时保存在内存中。当一个程序等待它的一部分读入内存时,可以把CPU交给另一个进程使用。在内存中可以保留多个进程,系统并发度提高

7.在程序需要分配连续的内存空间的时候,只需要在虚拟内存空间分配连续空间,而不需要实际物理内存的连续空间,可以利用碎片

 

虚拟内存的代价:

1.虚存的管理需要建立很多数据结构,这些数据结构要占用额外的内存

2.虚拟地址到物理地址的转换,增加了指令的执行时间。

3.页面的换入换出需要磁盘I/O,这是很耗时的

4.如果一页中只有一部分数据,会浪费内存。

 

 

● 请你说一说操作系统中的程序的内存结构

参考回答:

一个程序本质上都是由BSS段、data段、text段三个组成的。可以看到一个可执行程序在存储(没有调入内存)时分为代码段、数据区和未初始化数据区三部分。

BSS段(未初始化数据区):通常用来存放程序中未初始化的全局变量和静态变量的一块内存区域。BSS段属于静态分配,程序结束后静态变量资源由系统自动释放。

数据段:存放程序中已初始化的全局变量的一块内存区域。数据段也属于静态内存分配

代码段:存放程序执行代码的一块内存区域。这部分区域的大小在程序运行前就已经确定,并且内存区域属于只读。在代码段中,也有可能包含一些只读的常数变量

text段和data段在编译时已经分配了空间,而BSS段并不占用可执行文件的大小,它是由链接器来获取内存的。

bss段(未进行初始化的数据)的内容并不存放在磁盘上的程序文件中。其原因是内核在程序开始运行前将它们设置为0。需要存放在程序文件中的只有正文段和初始化数据段。

data段(已经初始化的数据)则为数据分配空间,数据保存到目标文件中。

数据段包含经过初始化的全局变量以及它们的值。BSS段的大小从可执行文件中得到,然后链接器得到这个大小的内存块,紧跟在数据段的后面。当这个内存进入程序的地址空间后全部清零。包含数据段和BSS段的整个区段此时通常称为数据区。

可执行程序在运行时又多出两个区域:栈区和堆区。

栈区:由编译器自动释放,存放函数的参数值、局部变量等。每当一个函数被调用时,该函数的返回类型和一些调用的信息被存放到栈中。然后这个被调用的函数再为他的自动变量和临时变量在栈上分配空间。每调用一个函数一个新的栈就会被使用。栈区是从高地址位向低地址位增长的,是一块连续的内存区域,最大容量是由系统预先定义好的,申请的栈空间超过这个界限时会提示溢出,用户能从栈中获取的空间较小。

堆区:用于动态分配内存,位于BSS和栈中间的地址区域。由程序员申请分配和释放。堆是从低地址位向高地址位增长,采用链式存储结构。频繁的malloc/free造成内存空间的不连续,产生碎片。当申请堆空间时库函数是按照一定的算法搜索可用的足够大的空间。因此堆的效率比栈要低的多。

 

● 请你说一说有了进程,为什么还要有线程?

参考回答:

线程产生的原因:

进程可以使多个程序能并发执行,以提高资源的利用率和系统的吞吐量;但是其具有一些缺点:

进程在同一时间只能干一件事

进程在执行的过程中如果阻塞,整个进程就会挂起,即使进程中有些工作不依赖于等待的资源,仍然不会执行。

 

因此,操作系统引入了比进程粒度更小的线程,作为并发执行的基本单位,从而减少程序在并发执行时所付出的时空开销,提高并发性。和进程相比,线程的优势如下:

从资源上来讲,线程是一种非常"节俭"的多任务操作方式。在linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种"昂贵"的多任务工作方式。

从切换效率上来讲,运行于一个进程中的多个线程,它们之间使用相同的地址空间,而且线程间彼此切换所需时间也远远小于进程间切换所需要的时间。据统计,一个进程的开销大约是一个线程开销的30倍左右。(

从通信机制上来讲,线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过进程间通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进城下的线程之间贡献数据空间,所以一个线程的数据可以直接为其他线程所用,这不仅快捷,而且方便。

除以上优点外,多线程程序作为一种多任务、并发的工作方式,还有如下优点:

1、使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。

2、改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序才会利于理解和修改。

 

● 请你说一说有了进程,为什么还要有线程?

参考回答:

线程产生的原因:

进程可以使多个程序能并发执行,以提高资源的利用率和系统的吞吐量;但是其具有一些缺点:

进程在同一时间只能干一件事

进程在执行的过程中如果阻塞,整个进程就会挂起,即使进程中有些工作不依赖于等待的资源,仍然不会执行。

 

因此,操作系统引入了比进程粒度更小的线程,作为并发执行的基本单位,从而减少程序在并发执行时所付出的时空开销,提高并发性。和进程相比,线程的优势如下:

从资源上来讲,线程是一种非常"节俭"的多任务操作方式。在linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种"昂贵"的多任务工作方式。

从切换效率上来讲,运行于一个进程中的多个线程,它们之间使用相同的地址空间,而且线程间彼此切换所需时间也远远小于进程间切换所需要的时间。据统计,一个进程的开销大约是一个线程开销的30倍左右。(

从通信机制上来讲,线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过进程间通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进城下的线程之间贡献数据空间,所以一个线程的数据可以直接为其他线程所用,这不仅快捷,而且方便。

除以上优点外,多线程程序作为一种多任务、并发的工作方式,还有如下优点:

1、使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。

2、改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序才会利于理解和修改。

 

● 请你说一说线程间的同步方式,最好说出具体的系统调用

参考回答:

信号量

信号量是一种特殊的变量,可用于线程同步。它只取自然数值,并且只支持两种操作:

P(SV):如果信号量SV大于0,将它减一;如果SV值为0,则挂起该线程。

V(SV):如果有其他进程因为等待SV而挂起,则唤醒,然后将SV+1;否则直接将SV+1。

其系统调用为:

sem_wait(sem_t *sem):以原子操作的方式将信号量减1,如果信号量值为0,则sem_wait将被阻塞,直到这个信号量具有非0值。

sem_post(sem_t *sem):以原子操作将信号量值+1。当信号量大于0时,其他正在调用sem_wait等待信号量的线程将被唤醒。

 

互斥量

互斥量又称互斥锁,主要用于线程互斥,不能保证按序访问,可以和条件锁一起实现同步。当进入临界区      时,需要获得互斥锁并且加锁;当离开临界区时,需要对互斥锁解锁,以唤醒其他等待该互斥锁的线程。其主要的系统调用如下:

pthread_mutex_init:初始化互斥锁

pthread_mutex_destroy:销毁互斥锁

pthread_mutex_lock:以原子操作的方式给一个互斥锁加锁,如果目标互斥锁已经被上锁,pthread_mutex_lock调用将阻塞,直到该互斥锁的占有者将其解锁。

pthread_mutex_unlock:以一个原子操作的方式给一个互斥锁解锁。

 

条件变量

条件变量,又称条件锁,用于在线程之间同步共享数据的值。条件变量提供一种线程间通信机制:当某个共享数据达到某个值时,唤醒等待这个共享数据的一个/多个线程。即,当某个共享变量等于某个值时,调用 signal/broadcast。此时操作共享变量时需要加锁。其主要的系统调用如下:

pthread_cond_init:初始化条件变量

pthread_cond_destroy:销毁条件变量

pthread_cond_signal:唤醒一个等待目标条件变量的线程。哪个线程被唤醒取决于调度策略和优先级。

pthread_cond_wait:等待目标条件变量。需要一个加锁的互斥锁确保操作的原子性。该函数中在进入wait状态前首先进行解锁,然后接收到信号后会再加锁,保证该线程对共享资源正确访问。

 

● 请你说一下多线程和多进程的不同

参考回答:

进程是资源分配的最小单位,而线程时CPU调度的最小单位。多线程之间共享同一个进程的地址空间,线程间通信简单,同步复杂,线程创建、销毁和切换简单,速度快,占用内存少,适用于多核分布式系统,但是线程间会相互影响,一个线程意外终止会导致同一个进程的其他线程也终止,程序可靠性弱。而多进程间拥有各自独立的运行地址空间,进程间不会相互影响,程序可靠性强,但是进程创建、销毁和切换复杂,速度慢,占用内存多,进程间通信复杂,但是同步简单,适用于多核、多机分布。

● 请你说一说进程和线程的区别

参考回答:

1)进程是cpu资源分配的最小单位,线程是cpu调度的最小单位。

2)进程有独立的系统资源,而同一进程内的线程共享进程的大部分系统资源,包括堆、代码段、数据段,每个线程只拥有一些在运行中必不可少的私有属性,比如tcb,线程Id,栈、寄存器。

3)一个进程崩溃,不会对其他进程产生影响;而一个线程崩溃,会让同一进程内的其他线程也死掉。

4)进程在创建、切换和销毁时开销比较大,而线程比较小。进程创建的时候需要分配系统资源,而销毁的的时候需要释放系统资源。进程切换需要分两步:切换页目录、刷新TLB以使用新的地址空间;切换内核栈和硬件上下文(寄存器);而同一进程的线程间逻辑地址空间是一样的,不需要切换页目录、刷新TLB。

5)进程间通信比较复杂,而同一进程的线程由于共享代码段和数据段,所以通信比较容易。

● 游戏服务器应该为每个用户开辟一个线程还是一个进程,为什么?

参考回答:

游戏服务器应该为每个用户开辟一个进程。因为同一进程间的线程会相互影响,一个线程死掉会影响其他线程,从而导致进程崩溃。因此为了保证不同用户之间不会相互影响,应该为每个用户开辟一个进程

 

● 请你说一说OS缺页置换算法

参考回答:

当访问一个内存中不存在的页,并且内存已满,则需要从内存中调出一个页或将数据送至磁盘对换区,替换一个页,这种现象叫做缺页置换。当前操作系统最常采用的缺页置换算法如下:

先进先出(FIFO)算法:置换最先调入内存的页面,即置换在内存中驻留时间最久的页面。按照进入内存的先后次序排列成队列,从队尾进入,从队首删除。

最近最少使用(LRU)算法: 置换最近一段时间以来最长时间未访问过的页面。根据程序局部性原理,刚被访问的页面,可能马上又要被访问;而较长时间内没有被访问的页面,可能最近不会被访问。

当前最常采用的就是LRU算法。

 

● 请你说一说进程和线程区别

参考回答:

1)进程是cpu资源分配的最小单位,线程是cpu调度的最小单位。

2)进程有独立的系统资源,而同一进程内的线程共享进程的大部分系统资源,包括堆、代码段、数据段,每个线程只拥有一些在运行中必不可少的私有属性,比如tcb,线程Id,栈、寄存器。

3)一个进程崩溃,不会对其他进程产生影响;而一个线程崩溃,会让同一进程内的其他线程也死掉。

4)进程在创建、切换和销毁时开销比较大,而线程比较小。进程创建的时候需要分配系统资源,而销毁的的时候需要释放系统资源。进程切换需要分两步:切换页目录、刷新TLB以使用新的地址空间;切换内核栈和硬件上下文(寄存器);而同一进程的线程间逻辑地址空间是一样的,不需要切换页目录、刷新TLB。

5)进程间通信比较复杂,而同一进程的线程由于共享代码段和数据段,所以通信比较容易。

● 请你说一下多进程和多线程的使用场景

参考回答:

多进程模型的优势是CPU

多线程模型主要优势为线程间切换代价较小,因此适用于I/O密集型的工作场景,因此I/O密集型的工作场景经常会由于I/O阻塞导致频繁的切换线程。同时,多线程模型也适用于单机多核分布式场景。

多进程模型,适用于CPU密集型。同时,多进程模型也适用于多机分布式场景中,易于多机扩展。

 

 

● 请你说一说死锁发生的条件以及如何解决死锁

参考回答:

死锁是指两个或两个以上进程在执行过程中,因争夺资源而造成的下相互等待的现象。死锁发生的四个必要条件如下:

互斥条件:进程对所分配到的资源不允许其他进程访问,若其他进程访问该资源,只能等待,直至占有该资源的进程使用完成后释放该资源;

请求和保持条件:进程获得一定的资源后,又对其他资源发出请求,但是该资源可能被其他进程占有,此时请求阻塞,但该进程不会释放自己已经占有的资源

不可剥夺条件:进程已获得的资源,在未完成使用之前,不可被剥夺,只能在使用后自己释放

环路等待条件:进程发生死锁后,必然存在一个进程-资源之间的环形链

死锁的条件共有四个,要背下来

 

解决死锁的方法即破坏上述四个条件之一,主要方法如下:

资源一次性分配,从而剥夺请求和保持条件

可剥夺资源:即当进程新的资源未得到满足时,释放已占有的资源,从而破坏不可剥夺的条件

资源有序分配法:系统给每类资源赋予一个序号,每个进程按编号递增的请求资源,释放则相反,从而破坏环路等待的条件

● 请问虚拟内存和物理内存怎么对应

 

 请你讲述一下互斥锁(mutex)机制,以及互斥锁和读写锁的区别

参考回答:

1、互斥锁和读写锁区别

互斥锁:mutex,用于保证在任何时刻,都只能有一个线程访问该对象。当获取锁操作失败时,线程会进入睡眠,等待锁释放时被唤醒。

读写锁:rwlock,分为读锁和写锁。处于读操作时,可以允许多个线程同时获得读操作。但是同一时刻只能有一个线程可以获得写锁。其它获取写锁失败的线程都会进入睡眠状态,直到写锁释放时被唤醒。 注意:写锁会阻塞其它读写锁。当有一个线程获得写锁在写时,读锁也不能被其它线程获取;写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)。适用于读取数据的频率远远大于写数据的频率的场合。

互斥锁和读写锁的区别

1)读写锁区分读者和写者,而互斥锁不区分

2)互斥锁同一时间只允许一个线程访问该对象,无论读写;读写锁同一时间内只允许一个写者,但是允许多个读者同时读对象。

2、Linux的4种锁机制:

互斥锁:mutex,用于保证在任何时刻,都只能有一个线程访问该对象。当获取锁操作失败时,线程会进入睡眠,等待锁释放时被唤醒

读写锁:rwlock,分为读锁和写锁。处于读操作时,可以允许多个线程同时获得读操作。但是同一时刻只能有一个线程可以获得写锁。其它获取写锁失败的线程都会进入睡眠状态,直到写锁释放时被唤醒。 注意:写锁会阻塞其它读写锁。当有一个线程获得写锁在写时,读锁也不能被其它线程获取;写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)。适用于读取数据的频率远远大于写数据的频率的场合。

自旋锁:spinlock,在任何时刻同样只能有一个线程访问对象。但是当获取锁操作失败时,不会进入睡眠,而是会在原地自旋,直到锁被释放。这样节省了线程从睡眠状态到被唤醒期间的消耗,在加锁时间短暂的环境下会极大的提高效率。但如果加锁时间过长,则会非常浪费CPU资源。

RCU:即read-copy-update,在修改数据时,首先需要读取数据,然后生成一个副本,对副本进行修改。修改完成后,再将老数据update成新的数据。使用RCU时,读者几乎不需要同步开销,既不需要获得锁,也不使用原子指令,不会导致锁竞争,因此就不用考虑死锁问题了。而对于写者的同步开销较大,它需要复制被修改的数据,还必须使用锁机制同步并行其它写者的修改操作。在有大量读操作,少量写操作的情况下效率非常高。

 

● 请你说一说进程状态转换图,动态就绪,静态就绪,动态阻塞,静态阻塞

参考回答:

1、进程的五种基本状态:

校招操作系统知识_第1张图片

1)创建状态:进程正在被创建

2)就绪状态:进程被加入到就绪队列中等待CPU调度运行

3)执行状态:进程正在被运行

4)等待阻塞状态:进程因为某种原因,比如等待I/O,等待设备,而暂时不能运行。

5)终止状态:进程运行完毕

 

● 请你说一说用户态和内核态区别

参考回答:

用户态和内核态是操作系统的两种运行级别,两者最大的区别就是特权级不同。用户态拥有最低的特权级,内核态拥有较高的特权级。运行在用户态的程序不能直接访问操作系统内核数据结构和程序。内核态和用户态之间的转换方式主要包括:系统调用,异常和中断。

 

● 怎样确定当前线程是繁忙还是阻塞?

参考回答:

使用ps命令查看

 

● 请问就绪状态的进程在等待什么?

参考回答:

被调度使用cpu的运行权

 

● 请你说一说多线程的同步,锁的机制

参考回答:

同步的时候用一个互斥量,在访问共享资源前对互斥量进行加锁,在访问完成后释放互斥量上的锁。对互斥量进行加锁以后,任何其他试图再次对互斥量加锁的线程将会被阻塞直到当前线程释放该互斥锁。如果释放互斥锁时有多个线程阻塞,所有在该互斥锁上的阻塞线程都会变成可运行状态,第一个变为运行状态的线程可以对互斥量加锁,其他线程将会看到互斥锁依然被锁住,只能回去再次等待它重新变为可用。在这种方式下,每次只有一个线程可以向前执行

 

● 请你说一说死锁产生的必要条件?

参考回答:

1.互斥条件:一个资源每次只能被一个进程使用。
2.请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
3.不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
4.循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

 

● 请你说一说内存溢出和内存泄漏

参考回答:

1、内存溢出

指程序申请内存时,没有足够的内存供申请者使用。内存溢出就是你要的内存空间超过了系统实际分配给你的空间,此时系统相当于没法满足你的需求,就会报内存溢出的错误

内存溢出原因:

内存中加载的数据量过于庞大,如一次从数据库取出过多数据

集合类中有对对象的引用,使用完后未清空,使得不能回收

代码中存在死循环或循环产生过多重复的对象实体

使用的第三方软件中的BUG

启动参数内存值设定的过小

2、内存泄漏

内存泄漏是指由于疏忽或错误造成了程序未能释放掉不再使用的内存的情况。内存泄漏并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,失去了对该段内存的控制,因而造成了内存的浪费。

内存泄漏的分类:

1、堆内存泄漏 (Heap leak)。对内存指的是程序运行中根据需要分配通过malloc,realloc new等从堆中分配的一块内存,再是完成后必须通过调用对应的 free或者delete 删掉。如果程序的设计的错误导致这部分内存没有被释放,那么此后这块内存将不会被使用,就会产生Heap Leak。

2、系统资源泄露(Resource Leak)。主要指程序使用系统分配的资源比如 Bitmap,handle ,SOCKET等没有使用相应的函数释放掉,导致系统资源的浪费,严重可导致系统效能降低,系统运行不稳定。

3、没有将基类的析构函数定义为虚函数。当基类指针指向子类对象时,如果基类的析构函数不是virtual,那么子类的析构函数将不会被调用,子类的资源没有正确是释放,因此造成内存泄露。

 

● 请你来说一说用户态到内核态的转化原理

参考回答:

1)用户态切换到内核态的3种方式

1、系统调用

这是用户进程主动要求切换到内核态的一种方式,用户进程通过系统调用申请操作系统提供的服务程序完成工作。而系统调用的机制其核心还是使用了操作系统为用户特别开放的一个中断来实现,例如Linux的ine 80h中断。

2、异常

当CPU在执行运行在用户态的程序时,发现了某些事件不可知的异常,这是会触发由当前运行进程切换到处理此。异常的内核相关程序中,也就到了内核态,比如缺页异常。

3、外围设备的中断

当外围设备完成用户请求的操作之后,会向CPU发出相应的中断信号,这时CPU会暂停执行下一条将要执行的指令,转而去执行中断信号的处理程序,如果先执行的指令是用户态下的程序,那么这个转换的过程自然也就发生了有用户态到内核态的切换。比如硬盘读写操作完成,系统会切换到硬盘读写的中断处理程序中执行后续操作等。

2)切换操作

从出发方式看,可以在认为存在前述3种不同的类型,但是从最终实际完成由用户态到内核态的切换操作上来说,涉及的关键步骤是完全一样的,没有任何区别,都相当于执行了一个中断响应的过程,因为系统调用实际上最终是中断机制实现的,而异常和中断处理机制基本上是一样的,用户态切换到内核态的步骤主要包括:

1、从当前进程的描述符中提取其内核栈的ss0及esp0信息。

2、使用ss0和esp0指向的内核栈将当前进程的cs,eip,eflags,ss,esp信息保存起来,这个过程也完成了由用户栈找到内核栈的切换过程,同时保存了被暂停执行的程序的下一条指令。

3、将先前由中断向量检索得到的中断处理程序的cs,eip信息装入相应的寄存器,开始执行中断处理程序,这时就转到了内核态的程序执行了。

 

● 请你说一下源码到可执行文件的过程

参考回答:

1)预编译

主要处理源代码文件中的以“#”开头的预编译指令。处理规则见下

1、删除所有的#define,展开所有的宏定义。

2、处理所有的条件预编译指令,如“#if”、“#endif”、“#ifdef”、“#elif”和“#else”。

3、处理“#include”预编译指令,将文件内容替换到它的位置,这个过程是递归进行的,文件中包含其他文件。

4、删除所有的注释,“//”和“/**/”。

5、保留所有的#pragma 编译器指令,编译器需要用到他们,如:#pragma once 是为了防止有文件被重复引用。

6、添加行号和文件标识,便于编译时编译器产生调试用的行号信息,和编译时产生编译错误或警告是能够显示行号。

2)编译

把预编译之后生成的xxx.i或xxx.ii文件,进行一系列词法分析、语法分析、语义分析及优化后,生成相应的汇编代码文件。

1、词法分析:利用类似于“有限状态机”的算法,将源代码程序输入到扫描机中,将其中的字符序列分割成一系列的记号。

2、语法分析:语法分析器对由扫描器产生的记号,进行语法分析,产生语法树。由语法分析器输出的语法树是一种以表达式为节点的树。

3、语义分析:语法分析器只是完成了对表达式语法层面的分析,语义分析器则对表达式是否有意义进行判断,其分析的语义是静态语义——在编译期能分期的语义,相对应的动态语义是在运行期才能确定的语义。

4、优化:源代码级别的一个优化过程。

5、目标代码生成:由代码生成器将中间代码转换成目标机器代码,生成一系列的代码序列——汇编语言表示。

6、目标代码优化:目标代码优化器对上述的目标机器代码进行优化:寻找合适的寻址方式、使用位移来替代乘法运算、删除多余的指令等。

3)汇编

将汇编代码转变成机器可以执行的指令(机器码文件)。 汇编器的汇编过程相对于编译器来说更简单,没有复杂的语法,也没有语义,更不需要做指令优化,只是根据汇编指令和机器指令的对照表一一翻译过来,汇编过程有汇编器as完成。经汇编之后,产生目标文件(与可执行文件格式几乎一样)xxx.o(Windows下)、xxx.obj(Linux下)。

4)链接

将不同的源文件产生的目标文件进行链接,从而形成一个可以执行的程序。链接分为静态链接和动态链接:

1、静态链接:

函数和数据被编译进一个二进制文件。在使用静态库的情况下,在编译链接可执行文件时,链接器从库中复制这些函数和数据并把它们和应用程序的其它模块组合起来创建最终的可执行文件。

空间浪费:因为每个可执行程序中对所有需要的目标文件都要有一份副本,所以如果多个程序对同一个目标文件都有依赖,会出现同一个目标文件都在内存存在多个副本;

更新困难:每当库函数的代码修改了,这个时候就需要重新进行编译链接形成可执行程序。

运行速度快:但是静态链接的优点就是,在可执行程序中已经具备了所有执行程序所需要的任何东西,在执行的时候运行速度快。

2、动态链接:

动态链接的基本思想是把程序按照模块拆分成各个相对独立部分,在程序运行时才将它们链接在一起形成一个完整的程序,而不是像静态链接一样把所有程序模块都链接成一个单独的可执行文件。

共享库:就是即使需要每个程序都依赖同一个库,但是该库不会像静态链接那样在内存中存在多分,副本,而是这多个程序在执行时共享同一份副本;

更新方便:更新时只需要替换原来的目标文件,而无需将所有的程序再重新链接一遍。当程序下一次运行时,新版本的目标文件会被自动加载到内存并且链接起来,程序就完成了升级的目标。

性能损耗:因为把链接推迟到了程序运行时,所以每次执行程序都需要进行链接,所以性能会有一定损失。

 

● 请问GDB调试用过吗,什么是条件断点

参考回答:

1、GDB调试

GDB 是自由软件基金会(Free Software Foundation)的软件工具之一。它的作用是协助程序员找到代码中的错误。如果没有GDB的帮助,程序员要想跟踪代码的执行流程,唯一的办法就是添加大量的语句来产生特定的输出。但这一手段本身就可能会引入新的错误,从而也就无法对那些导致程序崩溃的错误代码进行分析。

GDB的出现减轻了开发人员的负担,他们可以在程序运行的时候单步跟踪自己的代码,或者通过断点暂时中止程序的执行。此外,他们还能够随时察看变量和内存的当前状态,并监视关键的数据结构是如何影响代码运行的。

2、条件断点

条件断点是当满足条件就中断程序运行,命令:break line-or-function if expr。

例如:(gdb)break 666 if testsize==100

 

● 请你来介绍一下5种IO模型

参考回答:

1.阻塞IO:调用者调用了某个函数,等待这个函数返回,期间什么也不做,不停的去检查这个函数有没有返回,必须等这个函数返回才能进行下一步动作
2.非阻塞IO:非阻塞等待,每隔一段时间就去检测IO事件是否就绪。没有就绪就可以做其他事。
3.信号驱动IO:信号驱动IO:linux用套接口进行信号驱动IO,安装一个信号处理函数,进程继续运行并不阻塞,当IO时间就绪,进程收到SIGIO信号。然后处理IO事件。
4.IO复用/多路转接IO:linux用select/poll函数实现IO复用模型,这两个函数也会使进程阻塞,但是和阻塞IO所不同的是这两个函数可以同时阻塞多个IO操作。而且可以同时对多个读操作、写操作的IO函数进行检测。知道有数据可读或可写时,才真正调用IO操作函数
5.异步IO:linux中,可以调用aio_read函数告诉内核描述字缓冲区指针和缓冲区的大小、文件偏移及通知的方式,然后立即返回,当内核将数据拷贝到缓冲区后,再通知应用程序。

 

● 请你回答一下操作系统为什么要分内核态和用户态

参考回答:

为了安全性。在cpu的一些指令中,有的指令如果用错,将会导致整个系统崩溃。分了内核态和用户态后,当用户需要操作这些指令时候,内核为其提供了API,可以通过系统调用陷入内核,让内核去执行这些操作。

 

● 请问怎么实现线程池

参考回答:

1.设置一个生产者消费者队列,作为临界资源
2.初始化n个线程,并让其运行起来,加锁去队列取任务运行
3.当任务队列为空的时候,所有线程阻塞(条件变量)
4.当生产者队列来了一个任务后,先对队列加锁,把任务挂在到队列上,然后使用条件变量去通知阻塞中的一个线程

 

 

 

 

你可能感兴趣的:(算法)