stanford machine learning 笔记

梯度下降

1、梯度下降最好是实现同步梯度下降,异步梯度下降的结果比较奇怪,但也可能有效;

2、If α is too small, gradient descent can be slow.

      If α is too large, gradient descent can overshoot the minimum. It may fail toconverge, or even diverge.

3、As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decreaseα over time.

      当我们接近局部最小时,梯度下降算法会自动减小步长。所以没有必要减小α。

4、tricks:梯度下降需要将每一维的特征值缩放,均值归一化(mean normalization)

5、线性回归可以用梯度下降,也可以令导数为零求得

Gradient Descent

Normal Equation

Need to choose  α  .
Needs many iterations.
Works well even when n  is large.
No need tochoose α   .
Don’t need to iterate.
Need to compute (X -1X) -1
Slow if   n is very large.

 

你可能感兴趣的:(公开课,机器学习)