图的遍历之 深度优先搜索和广度优先搜索

出自:http://www.cnblogs.com/skywang12345/p/3711483.html

图的遍历之 深度优先搜索和广度优先搜索

本章会先对图的深度优先搜索和广度优先搜索进行介绍,然后再给出C/C++/Java的实现。

目录 
1
. 深度优先搜索的图文介绍 
1.1 深度优先搜索介绍 
1.2 深度优先搜索图解 
2. 广度优先搜索的图文介绍 
2.1 广度优先搜索介绍 
2.2 广度优先搜索图解 
3. 搜索算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

深度优先搜索的图文介绍

1. 深度优先搜索介绍

图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。

它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

显然,深度优先搜索是一个递归的过程。

2. 深度优先搜索图解

2.1 无向图的深度优先搜索

下面以"无向图"为例,来对深度优先搜索进行演示。

对上面的图G1进行深度优先遍历,从顶点A开始。

第1步:访问A。 
第2步:访问(A的邻接点)C。 
    在第1步访问A之后,接下来应该访问的是A的邻接点,即"C,D,F"中的一个。但在本文的实现中,顶点ABCDEFG是按照顺序存储,C在"D和F"的前面,因此,先访问C。 
第3步:访问(C的邻接点)B。 
    在第2步访问C之后,接下来应该访问C的邻接点,即"B和D"中一个(A已经被访问过,就不算在内)。而由于B在D之前,先访问B。 
第4步:访问(C的邻接点)D。 
    在第3步访问了C的邻接点B之后,B没有未被访问的邻接点;因此,返回到访问C的另一个邻接点D。 
第5步:访问(A的邻接点)F。 
    前面已经访问了A,并且访问完了"A的邻接点B的所有邻接点(包括递归的邻接点在内)";因此,此时返回到访问A的另一个邻接点F。 
第6步:访问(F的邻接点)G。 
第7步:访问(G的邻接点)E。

因此访问顺序是:A -> C -> B -> D -> F -> G -> E

 

2.2 有向图的深度优先搜索

下面以"有向图"为例,来对深度优先搜索进行演示。

对上面的图G2进行深度优先遍历,从顶点A开始。

第1步:访问A。 
第2步:访问B。 
    在访问了A之后,接下来应该访问的是A的出边的另一个顶点,即顶点B。 
第3步:访问C。 
    在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。 
第4步:访问E。 
    接下来访问C的出边的另一个顶点,即顶点E。 
第5步:访问D。 
    接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。 
第6步:访问F。 
    接下应该回溯"访问A的出边的另一个顶点F"。 
第7步:访问G。

因此访问顺序是:A -> B -> C -> E -> D -> F -> G

广度优先搜索的图文介绍

1. 广度优先搜索介绍

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

2. 广度优先搜索图解

2.1 无向图的广度优先搜索

下面以"无向图"为例,来对广度优先搜索进行演示。还是以上面的图G1为例进行说明。

第1步:访问A。 
第2步:依次访问C,D,F。 
    在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。 
第3步:依次访问B,G。 
    在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。 
第4步:访问E。 
    在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E

2.2 有向图的广度优先搜索

下面以"有向图"为例,来对广度优先搜索进行演示。还是以上面的图G2为例进行说明。

第1步:访问A。 
第2步:访问B。 
第3步:依次访问C,E,F。 
    在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。 
第4步:依次访问D,G。 
    在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G

搜索算法的源码

这里分别给出"邻接矩阵无向图"、"邻接表无向图"、"邻接矩阵有向图"、"邻接表有向图"的C/C++/Java搜索算法源码。这里就不再对源码进行说明,please RTFSC;参考源码中的注释进行了解。

1. C语言源码 
1.1
 邻接矩阵实现的无向图(matrixudg.c) 
1.2 邻接表实现的无向图(listudg.c) 
1.3 邻接矩阵实现的有向图(matrixdg.c) 
1.4 邻接表实现的有向图(listdg.c)

2. C++源码 
2.1
 邻接矩阵实现的无向图(MatrixUDG.cpp) 
2.2 邻接表实现的无向图(ListUDG.cpp) 
2.3 邻接矩阵实现的有向图(MatrixDG.cpp) 
2.4 邻接表实现的有向图(ListDG.cpp)

3. Java源码 
3.1
 邻接矩阵实现的无向图(MatrixUDG.java) 
3.2 邻接表实现的无向图(ListUDG.java) 
3.3 邻接矩阵实现的有向图(MatrixDG.java) 
3.4 邻接表实现的有向图(ListDG.java)

   
   
   
   
/**
* C: 邻接矩阵图表示的"无向图(Matrix Undirected Graph)"
*
* @author skywang
* @date 2014/04/18
*/

#include
#include
#include
#include

#define MAX 100
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
     char vexs [ MAX ]; // 顶点集合
     int vexnum ; // 顶点数
     int edgnum ; // 边数
     int matrix [ MAX ][ MAX ]; // 邻接矩阵
} Graph , * PGraph ;

/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position ( Graph g , char ch )
{
     int i ;
     for ( i = 0 ; i < g . vexnum ; i ++ )
         if ( g . vexs [ i ] == ch )
             return i ;
     return - 1 ;
}

/*
* 读取一个输入字符
*/
static char read_char ()
{
     char ch ;

     do {
         ch = getchar ();
     } while ( ! isLetter ( ch ));

     return ch ;
}

/*
* 创建图(自己输入)
*/
Graph * create_graph ()
{
     char c1 , c2 ;
     int v , e ;
     int i , p1 , p2 ;
     Graph * pG ;
    
     // 输入"顶点数"和"边数"
     printf ( "input vertex number: " );
     scanf ( "%d" , & v );
     printf ( "input edge number: " );
     scanf ( "%d" , & e );
     if ( v < 1 || e < 1 || ( e > ( v * ( v - 1 ))))
     {
         printf ( "input error: invalid parameters! \n " );
         return NULL ;
     }
    
     if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( Graph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = v ;
     pG -> edgnum = e ;
     // 初始化"顶点"
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         printf ( "vertex(%d): " , i );
         pG -> vexs [ i ] = read_char ();
     }

     // 初始化"边"
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         printf ( "edge(%d):" , i );
         c1 = read_char ();
         c2 = read_char ();

         p1 = get_position ( * pG , c1 );
         p2 = get_position ( * pG , c2 );
         if ( p1 ==- 1 || p2 ==- 1 )
         {
             printf ( "input error: invalid edge! \n " );
             free ( pG );
             return NULL ;
         }

         pG -> matrix [ p1 ][ p2 ] = 1 ;
         pG -> matrix [ p2 ][ p1 ] = 1 ;
     }

     return pG ;
}

/*
* 创建图(用已提供的矩阵)
*/
Graph * create_example_graph ()
{
     char vexs [] = { 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' };
     char edges [][ 2 ] = {
         { 'A' , 'C' },
         { 'A' , 'D' },
         { 'A' , 'F' },
         { 'B' , 'C' },
         { 'C' , 'D' },
         { 'E' , 'G' },
         { 'F' , 'G' }};
     int vlen = LENGTH ( vexs );
     int elen = LENGTH ( edges );
     int i , p1 , p2 ;
     Graph * pG ;
    
     // 输入"顶点数"和"边数"
     if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( Graph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = vlen ;
     pG -> edgnum = elen ;
     // 初始化"顶点"
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         pG -> vexs [ i ] = vexs [ i ];
     }

     // 初始化"边"
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         p1 = get_position ( * pG , edges [ i ][ 0 ]);
         p2 = get_position ( * pG , edges [ i ][ 1 ]);

         pG -> matrix [ p1 ][ p2 ] = 1 ;
         pG -> matrix [ p2 ][ p1 ] = 1 ;
     }

     return pG ;
}

/*
* 返回顶点v的第一个邻接顶点的索引,失败则返回-1
*/
static int first_vertex ( Graph G , int v )
{
     int i ;

     if ( v < 0 || v > ( G . vexnum - 1 ))
         return - 1 ;

     for ( i = 0 ; i < G . vexnum ; i ++ )
         if ( G . matrix [ v ][ i ] == 1 )
             return i ;

     return - 1 ;
}

/*
* 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
*/
static int next_vertix ( Graph G , int v , int w )
{
     int i ;

     if ( v < 0 || v > ( G . vexnum - 1 ) || w < 0 || w > ( G . vexnum - 1 ))
         return - 1 ;

     for ( i = w + 1 ; i < G . vexnum ; i ++ )
         if ( G . matrix [ v ][ i ] == 1 )
             return i ;

     return - 1 ;
}

/*
* 深度优先搜索遍历图的递归实现
*/
static void DFS ( Graph G , int i , int * visited )
{
     int w ;

     visited [ i ] = 1 ;
     printf ( "%c " , G . vexs [ i ]);
     // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
     for ( w = first_vertex ( G , i ); w >= 0 ; w = next_vertix ( G , i , w ))
     {
         if ( ! visited [ w ])
             DFS ( G , w , visited );
     }
       
}

/*
* 深度优先搜索遍历图
*/
void DFSTraverse ( Graph G )
{
     int i ;
     int visited [ MAX ]; // 顶点访问标记

     // 初始化所有顶点都没有被访问
     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "DFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         //printf("\n== LOOP(%d)\n", i);
         if ( ! visited [ i ])
             DFS ( G , i , visited );
     }
     printf ( " \n " );
}

/*
* 广度优先搜索(类似于树的层次遍历)
*/
void BFS ( Graph G )
{
     int head = 0 ;
     int rear = 0 ;
     int queue [ MAX ]; // 辅组队列
     int visited [ MAX ]; // 顶点访问标记
     int i , j , k ;

     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "BFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         if ( ! visited [ i ])
         {
             visited [ i ] = 1 ;
             printf ( "%c " , G . vexs [ i ]);
             queue [ rear ++ ] = i ; // 入队列
         }
         while ( head != rear )
         {
             j = queue [ head ++ ]; // 出队列
             for ( k = first_vertex ( G , j ); k >= 0 ; k = next_vertix ( G , j , k )) //k是为访问的邻接顶点
             {
                 if ( ! visited [ k ])
                 {
                     visited [ k ] = 1 ;
                     printf ( "%c " , G . vexs [ k ]);
                     queue [ rear ++ ] = k ;
                 }
             }
         }
     }
     printf ( " \n " );
}

/*
* 打印矩阵队列图
*/
void print_graph ( Graph G )
{
     int i , j ;

     printf ( "Martix Graph: \n " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         for ( j = 0 ; j < G . vexnum ; j ++ )
             printf ( "%d " , G . matrix [ i ][ j ]);
         printf ( " \n " );
     }
}

void main ()
{
     Graph * pG ;

     // 自定义"图"(输入矩阵队列)
     //pG = create_graph();
     // 采用已有的"图"
     pG = create_example_graph ();

     print_graph ( * pG ); // 打印图
     DFSTraverse ( * pG ); // 深度优先遍历
     BFS ( * pG ); // 广度优先遍历
}

   
   
   
   
/**
* C: 邻接表表示的"无向图(List Undirected Graph)"
*
* @author skywang
* @date 2014/04/18
*/

#include
#include
#include
#include

#define MAX 100
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))

// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
     int ivex ; // 该边所指向的顶点的位置
     struct _ENode * next_edge ; // 指向下一条弧的指针
} ENode , * PENode ;

// 邻接表中表的顶点
typedef struct _VNode
{
     char data ; // 顶点信息
     ENode * first_edge ; // 指向第一条依附该顶点的弧
} VNode ;

// 邻接表
typedef struct _LGraph
{
     int vexnum ; // 图的顶点的数目
     int edgnum ; // 图的边的数目
     VNode vexs [ MAX ];
} LGraph ;

/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position ( LGraph g , char ch )
{
     int i ;
     for ( i = 0 ; i < g . vexnum ; i ++ )
         if ( g . vexs [ i ]. data == ch )
             return i ;
     return - 1 ;
}

/*
* 读取一个输入字符
*/
static char read_char ()
{
     char ch ;

     do {
         ch = getchar ();
     } while ( ! isLetter ( ch ));

     return ch ;
}

/*
* 将node链接到list的末尾
*/
static void link_last ( ENode * list , ENode * node )
{
     ENode * p = list ;

     while ( p -> next_edge )
         p = p -> next_edge ;
     p -> next_edge = node ;
}

/*
* 创建邻接表对应的图(自己输入)
*/
LGraph * create_lgraph ()
{
     char c1 , c2 ;
     int v , e ;
     int i , p1 , p2 ;
     ENode * node1 , * node2 ;
     LGraph * pG ;

     // 输入"顶点数"和"边数"
     printf ( "input vertex number: " );
     scanf ( "%d" , & v );
     printf ( "input edge number: " );
     scanf ( "%d" , & e );
     if ( v < 1 || e < 1 || ( e > ( v * ( v - 1 ))))
     {
         printf ( "input error: invalid parameters! \n " );
         return NULL ;
     }
 
     if (( pG = ( LGraph * ) malloc ( sizeof ( LGraph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( LGraph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = v ;
     pG -> edgnum = e ;
     // 初始化"邻接表"的顶点
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         printf ( "vertex(%d): " , i );
         pG -> vexs [ i ]. data = read_char ();
         pG -> vexs [ i ]. first_edge = NULL ;
     }

     // 初始化"邻接表"的边
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         printf ( "edge(%d): " , i );
         c1 = read_char ();
         c2 = read_char ();

         p1 = get_position ( * pG , c1 );
         p2 = get_position ( * pG , c2 );

         // 初始化node1
         node1 = ( ENode * ) malloc ( sizeof ( ENode ));
         node1 -> ivex = p2 ;
         // 将node1链接到"p1所在链表的末尾"
         if ( pG -> vexs [ p1 ]. first_edge == NULL )
           pG -> vexs [ p1 ]. first_edge = node1 ;
         else
             link_last ( pG -> vexs [ p1 ]. first_edge , node1 );
         // 初始化node2
         node2 = ( ENode * ) malloc ( sizeof ( ENode ));
         node2 -> ivex = p1 ;
         // 将node2链接到"p2所在链表的末尾"
         if ( pG -> vexs [ p2 ]. first_edge == NULL )
           pG -> vexs [ p2 ]. first_edge = node2 ;
         else
             link_last ( pG -> vexs [ p2 ]. first_edge , node2 );
     }

     return pG ;
}

/*
* 创建邻接表对应的图(用已提供的数据)
*/
LGraph * create_example_lgraph ()
{
     char c1 , c2 ;
     char vexs [] = { 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' };
     char edges [][ 2 ] = {
         { 'A' , 'C' },
         { 'A' , 'D' },
         { 'A' , 'F' },
         { 'B' , 'C' },
         { 'C' , 'D' },
         { 'E' , 'G' },
         { 'F' , 'G' }};
     int vlen = LENGTH ( vexs );
     int elen = LENGTH ( edges );
     int i , p1 , p2 ;
     ENode * node1 , * node2 ;
     LGraph * pG ;


     if (( pG = ( LGraph * ) malloc ( sizeof ( LGraph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( LGraph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = vlen ;
     pG -> edgnum = elen ;
     // 初始化"邻接表"的顶点
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         pG -> vexs [ i ]. data = vexs [ i ];
         pG -> vexs [ i ]. first_edge = NULL ;
     }

     // 初始化"邻接表"的边
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         c1 = edges [ i ][ 0 ];
         c2 = edges [ i ][ 1 ];

         p1 = get_position ( * pG , c1 );
         p2 = get_position ( * pG , c2 );

         // 初始化node1
         node1 = ( ENode * ) malloc ( sizeof ( ENode ));
         node1 -> ivex = p2 ;
         // 将node1链接到"p1所在链表的末尾"
         if ( pG -> vexs [ p1 ]. first_edge == NULL )
           pG -> vexs [ p1 ]. first_edge = node1 ;
         else
             link_last ( pG -> vexs [ p1 ]. first_edge , node1 );
         // 初始化node2
         node2 = ( ENode * ) malloc ( sizeof ( ENode ));
         node2 -> ivex = p1 ;
         // 将node2链接到"p2所在链表的末尾"
         if ( pG -> vexs [ p2 ]. first_edge == NULL )
           pG -> vexs [ p2 ]. first_edge = node2 ;
         else
             link_last ( pG -> vexs [ p2 ]. first_edge , node2 );
     }

     return pG ;
}

/*
* 深度优先搜索遍历图的递归实现
*/
static void DFS ( LGraph G , int i , int * visited )
{
     int w ;
     ENode * node ;

     visited [ i ] = 1 ;
     printf ( "%c " , G . vexs [ i ]. data );
     node = G . vexs [ i ]. first_edge ;
     while ( node != NULL )
     {
         if ( ! visited [ node -> ivex ])
             DFS ( G , node -> ivex , visited );
         node = node -> next_edge ;
     }
}

/*
* 深度优先搜索遍历图
*/
void DFSTraverse ( LGraph G )
{
     int i ;
     int visited [ MAX ]; // 顶点访问标记

     // 初始化所有顶点都没有被访问
     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "DFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         if ( ! visited [ i ])
             DFS ( G , i , visited );
     }
     printf ( " \n " );
}

/*
* 广度优先搜索(类似于树的层次遍历)
*/
void BFS ( LGraph G )
{
     int head = 0 ;
     int rear = 0 ;
     int queue [ MAX ]; // 辅组队列
     int visited [ MAX ]; // 顶点访问标记
     int i , j , k ;
     ENode * node ;

     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "BFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         if ( ! visited [ i ])
         {
             visited [ i ] = 1 ;
             printf ( "%c " , G . vexs [ i ]. data );
             queue [ rear ++ ] = i ; // 入队列
         }
         while ( head != rear )
         {
             j = queue [ head ++ ]; // 出队列
             node = G . vexs [ j ]. first_edge ;
             while ( node != NULL )
             {
                 k = node -> ivex ;
                 if ( ! visited [ k ])
                 {
                     visited [ k ] = 1 ;
                     printf ( "%c " , G . vexs [ k ]. data );
                     queue [ rear ++ ] = k ;
                 }
                 node = node -> next_edge ;
             }
         }
     }
     printf ( " \n " );
}

/*
* 打印邻接表图
*/
void print_lgraph ( LGraph G )
{
     int i , j ;
     ENode * node ;

     printf ( "List Graph: \n " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         printf ( "%d(%c): " , i , G . vexs [ i ]. data );
         node = G . vexs [ i ]. first_edge ;
         while ( node != NULL )
         {
             printf ( "%d(%c) " , node -> ivex , G . vexs [ node -> ivex ]. data );
             node = node -> next_edge ;
         }
         printf ( " \n " );
     }
}

void main ()
{
     LGraph * pG ;

     // 自定义"图"(自己输入数据)
     //pG = create_lgraph();
     // 采用已有的"图"
     pG = create_example_lgraph ();

     // 打印图
     print_lgraph ( * pG );
     DFSTraverse ( * pG );
     BFS ( * pG );
}

   
   
   
   
/**
* C: 邻接矩阵表示的"有向图(Matrix Directed Graph)"
*
* @author skywang
* @date 2014/04/18
*/

#include
#include
#include
#include

#define MAX 100
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
     char vexs [ MAX ]; // 顶点集合
     int vexnum ; // 顶点数
     int edgnum ; // 边数
     int matrix [ MAX ][ MAX ]; // 邻接矩阵
} Graph , * PGraph ;

/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position ( Graph g , char ch )
{
     int i ;
     for ( i = 0 ; i < g . vexnum ; i ++ )
         if ( g . vexs [ i ] == ch )
             return i ;
     return - 1 ;
}

/*
* 读取一个输入字符
*/
static char read_char ()
{
     char ch ;

     do {
         ch = getchar ();
     } while ( ! isLetter ( ch ));

     return ch ;
}

/*
* 创建图(自己输入)
*/
Graph * create_graph ()
{
     char c1 , c2 ;
     int v , e ;
     int i , p1 , p2 ;
     Graph * pG ;
    
     // 输入"顶点数"和"边数"
     printf ( "input vertex number: " );
     scanf ( "%d" , & v );
     printf ( "input edge number: " );
     scanf ( "%d" , & e );
     if ( v < 1 || e < 1 || ( e > ( v * ( v - 1 ))))
     {
         printf ( "input error: invalid parameters! \n " );
         return NULL ;
     }
    
     if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( Graph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = v ;
     pG -> edgnum = e ;
     // 初始化"顶点"
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         printf ( "vertex(%d): " , i );
         pG -> vexs [ i ] = read_char ();
     }

     // 初始化"边"
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         printf ( "edge(%d):" , i );
         c1 = read_char ();
         c2 = read_char ();

         p1 = get_position ( * pG , c1 );
         p2 = get_position ( * pG , c2 );
         if ( p1 ==- 1 || p2 ==- 1 )
         {
             printf ( "input error: invalid edge! \n " );
             free ( pG );
             return NULL ;
         }

         pG -> matrix [ p1 ][ p2 ] = 1 ;
     }

     return pG ;
}

/*
* 创建图(用已提供的矩阵)
*/
Graph * create_example_graph ()
{
     char vexs [] = { 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' };
     char edges [][ 2 ] = {
         { 'A' , 'B' },
         { 'B' , 'C' },
         { 'B' , 'E' },
         { 'B' , 'F' },
         { 'C' , 'E' },
         { 'D' , 'C' },
         { 'E' , 'B' },
         { 'E' , 'D' },
         { 'F' , 'G' }};
     int vlen = LENGTH ( vexs );
     int elen = LENGTH ( edges );
     int i , p1 , p2 ;
     Graph * pG ;
    
     // 输入"顶点数"和"边数"
     if (( pG = ( Graph * ) malloc ( sizeof ( Graph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( Graph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = vlen ;
     pG -> edgnum = elen ;
     // 初始化"顶点"
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         pG -> vexs [ i ] = vexs [ i ];
     }

     // 初始化"边"
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         p1 = get_position ( * pG , edges [ i ][ 0 ]);
         p2 = get_position ( * pG , edges [ i ][ 1 ]);

         pG -> matrix [ p1 ][ p2 ] = 1 ;
     }

     return pG ;
}

/*
* 返回顶点v的第一个邻接顶点的索引,失败则返回-1
*/
static int first_vertex ( Graph G , int v )
{
     int i ;

     if ( v < 0 || v > ( G . vexnum - 1 ))
         return - 1 ;

     for ( i = 0 ; i < G . vexnum ; i ++ )
         if ( G . matrix [ v ][ i ] == 1 )
             return i ;

     return - 1 ;
}

/*
* 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
*/
static int next_vertix ( Graph G , int v , int w )
{
     int i ;

     if ( v < 0 || v > ( G . vexnum - 1 ) || w < 0 || w > ( G . vexnum - 1 ))
         return - 1 ;

     for ( i = w + 1 ; i < G . vexnum ; i ++ )
         if ( G . matrix [ v ][ i ] == 1 )
             return i ;

     return - 1 ;
}

/*
* 深度优先搜索遍历图的递归实现
*/
static void DFS ( Graph G , int i , int * visited )
{
     int w ;

     visited [ i ] = 1 ;
     printf ( "%c " , G . vexs [ i ]);
     // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
     for ( w = first_vertex ( G , i ); w >= 0 ; w = next_vertix ( G , i , w ))
     {
         if ( ! visited [ w ])
             DFS ( G , w , visited );
     }
       
}

/*
* 深度优先搜索遍历图
*/
void DFSTraverse ( Graph G )
{
     int i ;
     int visited [ MAX ]; // 顶点访问标记

     // 初始化所有顶点都没有被访问
     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "DFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         //printf("\n== LOOP(%d)\n", i);
         if ( ! visited [ i ])
             DFS ( G , i , visited );
     }
     printf ( " \n " );
}

/*
* 广度优先搜索(类似于树的层次遍历)
*/
void BFS ( Graph G )
{
     int head = 0 ;
     int rear = 0 ;
     int queue [ MAX ]; // 辅组队列
     int visited [ MAX ]; // 顶点访问标记
     int i , j , k ;

     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "BFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         if ( ! visited [ i ])
         {
             visited [ i ] = 1 ;
             printf ( "%c " , G . vexs [ i ]);
             queue [ rear ++ ] = i ; // 入队列
         }
         while ( head != rear )
         {
             j = queue [ head ++ ]; // 出队列
             for ( k = first_vertex ( G , j ); k >= 0 ; k = next_vertix ( G , j , k )) //k是为访问的邻接顶点
             {
                 if ( ! visited [ k ])
                 {
                     visited [ k ] = 1 ;
                     printf ( "%c " , G . vexs [ k ]);
                     queue [ rear ++ ] = k ;
                 }
             }
         }
     }
     printf ( " \n " );
}

/*
* 打印矩阵队列图
*/
void print_graph ( Graph G )
{
     int i , j ;

     printf ( "Martix Graph: \n " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         for ( j = 0 ; j < G . vexnum ; j ++ )
             printf ( "%d " , G . matrix [ i ][ j ]);
         printf ( " \n " );
     }
}

void main ()
{
     Graph * pG ;

     // 自定义"图"(输入矩阵队列)
     //pG = create_graph();
     // 采用已有的"图"
     pG = create_example_graph ();

     print_graph ( * pG ); // 打印图
     DFSTraverse ( * pG ); // 深度优先遍历
     BFS ( * pG ); // 广度优先遍历
}

   
   
   
   
/**
* C: 邻接表表示的"有向图(List Directed Graph)"
*
* @author skywang
* @date 2014/04/18
*/

#include
#include
#include
#include

#define MAX 100
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))

// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
     int ivex ; // 该边所指向的顶点的位置
     struct _ENode * next_edge ; // 指向下一条弧的指针
} ENode , * PENode ;

// 邻接表中表的顶点
typedef struct _VNode
{
     char data ; // 顶点信息
     ENode * first_edge ; // 指向第一条依附该顶点的弧
} VNode ;

// 邻接表
typedef struct _LGraph
{
     int vexnum ; // 图的顶点的数目
     int edgnum ; // 图的边的数目
     VNode vexs [ MAX ];
} LGraph ;

/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position ( LGraph g , char ch )
{
     int i ;
     for ( i = 0 ; i < g . vexnum ; i ++ )
         if ( g . vexs [ i ]. data == ch )
             return i ;
     return - 1 ;
}

/*
* 读取一个输入字符
*/
static char read_char ()
{
     char ch ;

     do {
         ch = getchar ();
     } while ( ! isLetter ( ch ));

     return ch ;
}

/*
* 将node链接到list的末尾
*/
static void link_last ( ENode * list , ENode * node )
{
     ENode * p = list ;

     while ( p -> next_edge )
         p = p -> next_edge ;
     p -> next_edge = node ;
}

/*
* 创建邻接表对应的图(自己输入)
*/
LGraph * create_lgraph ()
{
     char c1 , c2 ;
     int v , e ;
     int i , p1 , p2 ;
     ENode * node1 , * node2 ;
     LGraph * pG ;

     // 输入"顶点数"和"边数"
     printf ( "input vertex number: " );
     scanf ( "%d" , & v );
     printf ( "input edge number: " );
     scanf ( "%d" , & e );
     if ( v < 1 || e < 1 || ( e > ( v * ( v - 1 ))))
     {
         printf ( "input error: invalid parameters! \n " );
         return NULL ;
     }
 
     if (( pG = ( LGraph * ) malloc ( sizeof ( LGraph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( LGraph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = v ;
     pG -> edgnum = e ;
     // 初始化"邻接表"的顶点
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         printf ( "vertex(%d): " , i );
         pG -> vexs [ i ]. data = read_char ();
         pG -> vexs [ i ]. first_edge = NULL ;
     }

     // 初始化"邻接表"的边
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         printf ( "edge(%d): " , i );
         c1 = read_char ();
         c2 = read_char ();

         p1 = get_position ( * pG , c1 );
         p2 = get_position ( * pG , c2 );
         // 初始化node1
         node1 = ( ENode * ) malloc ( sizeof ( ENode ));
         node1 -> ivex = p2 ;
         // 将node1链接到"p1所在链表的末尾"
         if ( pG -> vexs [ p1 ]. first_edge == NULL )
           pG -> vexs [ p1 ]. first_edge = node1 ;
         else
             link_last ( pG -> vexs [ p1 ]. first_edge , node1 );
     }

     return pG ;
}

/*
* 创建邻接表对应的图(用已提供的数据)
*/
LGraph * create_example_lgraph ()
{
     char c1 , c2 ;
     char vexs [] = { 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' };
     char edges [][ 2 ] = {
         { 'A' , 'B' },
         { 'B' , 'C' },
         { 'B' , 'E' },
         { 'B' , 'F' },
         { 'C' , 'E' },
         { 'D' , 'C' },
         { 'E' , 'B' },
         { 'E' , 'D' },
         { 'F' , 'G' }};
     int vlen = LENGTH ( vexs );
     int elen = LENGTH ( edges );
     int i , p1 , p2 ;
     ENode * node1 , * node2 ;
     LGraph * pG ;


     if (( pG = ( LGraph * ) malloc ( sizeof ( LGraph ))) == NULL )
         return NULL ;
     memset ( pG , 0 , sizeof ( LGraph ));

     // 初始化"顶点数"和"边数"
     pG -> vexnum = vlen ;
     pG -> edgnum = elen ;
     // 初始化"邻接表"的顶点
     for ( i = 0 ; i < pG -> vexnum ; i ++ )
     {
         pG -> vexs [ i ]. data = vexs [ i ];
         pG -> vexs [ i ]. first_edge = NULL ;
     }

     // 初始化"邻接表"的边
     for ( i = 0 ; i < pG -> edgnum ; i ++ )
     {
         // 读取边的起始顶点和结束顶点
         c1 = edges [ i ][ 0 ];
         c2 = edges [ i ][ 1 ];

         p1 = get_position ( * pG , c1 );
         p2 = get_position ( * pG , c2 );
         // 初始化node1
         node1 = ( ENode * ) malloc ( sizeof ( ENode ));
         node1 -> ivex = p2 ;
         // 将node1链接到"p1所在链表的末尾"
         if ( pG -> vexs [ p1 ]. first_edge == NULL )
           pG -> vexs [ p1 ]. first_edge = node1 ;
         else
             link_last ( pG -> vexs [ p1 ]. first_edge , node1 );
     }

     return pG ;
}

/*
* 深度优先搜索遍历图的递归实现
*/
static void DFS ( LGraph G , int i , int * visited )
{
     int w ;
     ENode * node ;

     visited [ i ] = 1 ;
     printf ( "%c " , G . vexs [ i ]. data );
     node = G . vexs [ i ]. first_edge ;
     while ( node != NULL )
     {
         if ( ! visited [ node -> ivex ])
             DFS ( G , node -> ivex , visited );
         node = node -> next_edge ;
     }
}

/*
* 深度优先搜索遍历图
*/
void DFSTraverse ( LGraph G )
{
     int i ;
     int visited [ MAX ]; // 顶点访问标记

     // 初始化所有顶点都没有被访问
     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "DFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         if ( ! visited [ i ])
             DFS ( G , i , visited );
     }
     printf ( " \n " );
}

/*
* 广度优先搜索(类似于树的层次遍历)
*/
void BFS ( LGraph G )
{
     int head = 0 ;
     int rear = 0 ;
     int queue [ MAX ]; // 辅组队列
     int visited [ MAX ]; // 顶点访问标记
     int i , j , k ;
     ENode * node ;

     for ( i = 0 ; i < G . vexnum ; i ++ )
         visited [ i ] = 0 ;

     printf ( "BFS: " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         if ( ! visited [ i ])
         {
             visited [ i ] = 1 ;
             printf ( "%c " , G . vexs [ i ]. data );
             queue [ rear ++ ] = i ; // 入队列
         }
         while ( head != rear )
         {
             j = queue [ head ++ ]; // 出队列
             node = G . vexs [ j ]. first_edge ;
             while ( node != NULL )
             {
                 k = node -> ivex ;
                 if ( ! visited [ k ])
                 {
                     visited [ k ] = 1 ;
                     printf ( "%c " , G . vexs [ k ]. data );
                     queue [ rear ++ ] = k ;
                 }
                 node = node -> next_edge ;
             }
         }
     }
     printf ( " \n " );
}

/*
* 打印邻接表图
*/
void print_lgraph ( LGraph G )
{
     int i , j ;
     ENode * node ;

     printf ( "List Graph: \n " );
     for ( i = 0 ; i < G . vexnum ; i ++ )
     {
         printf ( "%d(%c): " , i , G . vexs [ i ]. data );
         node = G . vexs [ i ]. first_edge ;
         while ( node != NULL )
         {
             printf ( "%d(%c) " , node -> ivex , G . vexs [ node -> ivex ]. data );
             node = node -> next_edge ;
         }
         printf ( " \n " );
     }
}

void main ()
{
     LGraph * pG ;

     // 自定义"图"(自己输入数据)
     //pG = create_lgraph();
     // 采用已有的"图"
     pG = create_example_lgraph ();

     // 打印图
     print_lgraph ( * pG );
     DFSTraverse ( * pG );
     BFS ( * pG );
}

你可能感兴趣的:(图的遍历之 深度优先搜索和广度优先搜索)