基于keras的Resnet

本文的部分内容借鉴https://zhuanlan.zhihu.com/p/21586417

首先看看Resnet最常见的一张图:

基于keras的Resnet_第1张图片
v2-358f29d5d8fab3ed6bea88ca7075f3a9_b.png

当网络结构越来越深时, 想必浅层结构, 网络越来越难被训练.
如今有很多常用的方法, 比如 BatchNormalization, Dropout等手段, 以前关于BN的文章可以看出, 不加BN时网络可能直接发散了.
DL的原则是网络的深度越深越好, 深度代表着一种熵, 也就是网络的深度代表着网络对特征的抽象化程度, 抽象程度越高的越可能包含有语义级的含义. 但是如何解决难以训练的问题呢?

  • 该怎么解决呢?

如果加入的神经元是线性的, 也就是x = x, 网络结构的实际深度实际上没有变化.
对于DL的一层来说, 正常的映射应该是 x -> f(x) 如果这时按照上图则应该有x -> h(x)+x, 如果想要二者相等, h(x)+x=f(x), 也就是h(x) = f(x)-x,这就是"残差"概念的由来. 当h(x) = 0时, 网络等价于x->x,与此同时x=f(x),一方面网络基本等于线性,可以扩展到很深,另一方面本来希望得到的非线性映射也传播了下去.

  • 还有一种说法是低层的特征与高层的特征进行了融合,从而获得了更好的效果,这种说法也有一定的道理.
  • 当然,后来还有一篇论文证明resnet的深度没有实质的加深,这篇论文我还没有看过,等看完以后我还会来更新这篇博客.
  • resnet包含两种重要的基本结构, 从名字上看就知道一个是带卷积的,一个是不带卷积的. 完整版网络结构在: http://link.zhihu.com/?target=http%3A//ethereon.github.io/netscope/%23/gist/db945b393d40bfa26006, 熟悉了以下这两个基本结构,继续往下搭积木就可以.
    conv_block
    identity_block
  • conv_block
基于keras的Resnet_第2张图片
v2-ab8ddd6f4efd4635222211443c72de6d_b.png
程序没有管每个节点的命名, 主路1,3,1结构,侧路1结构
def conv_block(input_tensor, filters):
    filter1, filter2, filter3 = filters

    x = Conv2D(filter1,(1,1),strides=1)(input_tensor)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter2,(3,3),strides=1,padding='same')(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter3,(1,1),strides=1)(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    y = Conv2D(filter3,(1,1),strides=1)(input_tensor)
    y = BatchNormalization(axis=-1)(y)
    y = Activation('relu')(y)

    out = merge([x,y],mode='sum')
    z = Activation('relu')(out)

    return z

  • identity_block 不同的地方是侧路没有卷积
基于keras的Resnet_第3张图片
v2-7b95380d6bec5e74a3253ce5ff0fd724_b.png
def identity_block(input_tensor, filters):


    filter1, filter2, filter3 = filters

    x = Conv2D(filter1,(1,1),strides=1)(input_tensor)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter2,(3,3),strides=1,padding='same')(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter3,(1,1),strides=1)(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    y = Conv2D(filter3,(1,1),strides=1)(input_tensor)
    y = BatchNormalization(axis=-1)(y)
    y = Activation('relu')(y)

    out = merge([x,input_tensor],mode='sum')
    z = Activation('relu')(out)
    return z

网络的整体结构为:

data  1,3,224,224

conv  filter=64, kernel_size=7, pad=3,stride=2 1,64,112,112

bn

activation('relu')

maxpool kernel_size=3,stride=2  1,64,56,56

# block 1  (64,64,256)
conv_block() in:1,64,56,56 filter=(64,64,256),out=1,256,56,56

identity_block  in=1,256,56,56, filter=(64,64,256),out=1,256,56,56

identity_block  in=1,256,56,56, filter=(64,64,256),out=1,256,56,56

# block 2  (128,128,512)

conv_block  in=1,256,56,56 filter=(128,128,512),out=1,512,28,28

identity_block  in=1,256,56,56 filter=(128,128,512),out=1,512,28,28

identity_block  in=1,256,56,56 filter=(128,128,512),out=1,512,28,28

identity_block  in=1,256,56,56 filter=(128,128,512),out=1,512,28,28

# block 3 (256,256,1024)

conv_block  in=1,512,28,28 filter=(256,256,1024),out=1,1024,14,14

identity_block  in=1,512,28,28 filter=(256,256,1024),out=1,1024,14,14

identity_block  in=1,512,28,28 filter=(256,256,1024),out=1,1024,14,14

identity_block  in=1,512,28,28 filter=(256,256,1024),out=1,1024,14,14

identity_block  in=1,512,28,28 filter=(256,256,1024),out=1,1024,14,14

identity_block  in=1,512,28,28 filter=(256,256,1024),out=1,1024,14,14

# block 4 (512,512,2048)

conv_block  in=1,1024,14,14 filter=(512,512,2048),out=1,2048,7,7

identity_block  in=1,1024,14,14 filter=(512,512,2048),out=1,2048,7,7

identity_block  in=1,1024,14,14 filter=(512,512,2048),out=1,2048,7,7

maxpool kernel_size=7, stride=1 out=1,2048,1,1

flatten

dence(1,1000)

acivation('softmax')

probbility(1,1000)

主函数

# coding:utf-8
import keras
from resnet_model import resnet_model
from keras.datasets import cifar10
from keras.utils import plot_model
from keras.callbacks import TensorBoard, ModelCheckpoint, LearningRateScheduler
import math

if __name__ == '__main__':

    n_class = 10
    img_w = 32
    img_h = 32
    BATCH_SIZE = 128
    EPOCH = 100

    (x_train, y_train), (x_test, y_test) = cifar10.load_data()

    x_train = x_train.astype('float32')
    x_train /= 255.
    y_train = keras.utils.np_utils.to_categorical(y_train, n_class)

    x_test = x_test.astype('float32')
    x_test /= 255.
    y_test = keras.utils.np_utils.to_categorical(y_test, n_class)


    tb = TensorBoard(log_dir='log')
    cp = ModelCheckpoint(filepath='best_model.h5', monitor='val_loss',save_best_only=1, mode='auto')


    def step_decay(epoch):
        initial_lrate = 0.01
        drop = 0.5
        epochs_drop = 10.0
        lrate = initial_lrate * math.pow(drop, math.floor((1 + epoch) / epochs_drop))
        return lrate

    lr = LearningRateScheduler(step_decay)
    CB = [tb, cp, lr]
    input_shape = [x_train.shape[1], x_train.shape[2], x_train.shape[3]]

    model = resnet_model(out_class=n_class, input_shape = input_shape)

    plot_model(model, show_layer_names=1)

    model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])

    model.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCH, validation_split=0.3,
              callbacks=CB, shuffle=1)

    loss, acc = model.evaluate(x_test, y_test, batch_size= BATCH_SIZE)

模型函数

# coding: utf-8
from keras.models import Model
from keras.layers import Input,Conv2D,BatchNormalization,Activation,MaxPool2D,merge,Flatten,Dense
import math
# from identity_block import identity_block
# from conv_block import conv_block
# from keras.layers import Conv2D,BatchNormalization,Activation

def conv_block(input_tensor, filters):
    filter1, filter2, filter3 = filters

    x = Conv2D(filter1,(1,1),strides=1)(input_tensor)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter2,(3,3),strides=1,padding='same')(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter3,(1,1),strides=1)(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    y = Conv2D(filter3,(1,1),strides=1)(input_tensor)
    y = BatchNormalization(axis=-1)(y)
    y = Activation('relu')(y)

    out = merge([x,y],mode='sum')
    z = Activation('relu')(out)

    return z




def identity_block(input_tensor, filters):


    filter1, filter2, filter3 = filters

    x = Conv2D(filter1,(1,1),strides=1)(input_tensor)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter2,(3,3),strides=1,padding='same')(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    x = Conv2D(filter3,(1,1),strides=1)(x)
    x = BatchNormalization(axis=-1)(x)
    x = Activation('relu')(x)

    y = Conv2D(filter3,(1,1),strides=1)(input_tensor)
    y = BatchNormalization(axis=-1)(y)
    y = Activation('relu')(y)

    out = merge([x,input_tensor],mode='sum')
    z = Activation('relu')(out)
    return z



def resnet_model(out_class, input_shape):

    inputs = Input(shape=input_shape) #1,3,224,224

    #
    x = Conv2D(64, (7, 7), strides=2, padding='same')(inputs) #conv1  1,64,112,112
    x = BatchNormalization(axis=-1)(x) #bn_conv1
    x = Activation('relu')(x) #conv1_relu

    x = MaxPool2D(pool_size=(3,3),strides=2)(x) # 1,64,56,56

    # block1  (64,64,256) 1,2 in:1,64,56,56
    x = conv_block(x, [64, 64, 256]) #out=1,256,56,56
    x = identity_block(x, [64, 64, 256]) #out=1,256,56,56
    x = identity_block(x, [64, 64, 256]) #out=1,256,56,56

    # block2  (128,128,512) 1,3 in:1,256,56,56
    x = conv_block(x, [128,128,512]) #out=1,512,28,28
    x = identity_block(x, [128,128,512]) #out=1,512,28,28
    x = identity_block(x, [128,128,512]) #out=1,512,28,28
    x = identity_block(x, [128, 128, 512])  # out=1,512,28,28

    # block 3 (256,256,1024) 1,5 in:1,512,28,28
    x = conv_block(x, [256,256,1024])  # out=1,1024,14,14
    x = identity_block(x, [256, 256, 1024])  # out=1,1024,14,14
    x = identity_block(x, [256, 256, 1024])  # out=1,1024,14,14
    x = identity_block(x, [256, 256, 1024])  # out=1,1024,14,14
    x = identity_block(x, [256, 256, 1024])  # out=1,1024,14,14
    x = identity_block(x, [256, 256, 1024])  # out=1,1024,14,14

    # block 4 (512,512,2048) 1,2 in:1,1024,14,14
    x = conv_block(x, [512,512,2048])  # out=1,2048,7,7
    x = identity_block(x, [512, 512, 2048])  # out=1,2048,7,7
    x = identity_block(x, [512, 512, 2048])  # out=1,2048,7,7

    # maxpool kernel_size=7, stride=1 out=1,2048,1,1
    x = MaxPool2D(pool_size=(7, 7), strides=1)(x)

    # flatten
    x = Flatten()(x)

    # # Dense
    # x = Dense(1000)(x) # out=1,1000

    # Dense,这里改造了一下,适应cifar10
    x = Dense(out_class)(x)  # out=1,1000

    out = Activation('softmax')(x)

    model = Model(inputs=inputs, outputs=out)

    return model

现在正在跑, 1060的卡还是太局限了, 建议有经济能力的同学直接上1080ti,

  • epoch=300,每轮166秒,一共用时13.8小时计算完成
基于keras的Resnet_第4张图片
图片.png
基于keras的Resnet_第5张图片
图片.png
基于keras的Resnet_第6张图片
图片.png
基于keras的Resnet_第7张图片
图片.png
  • 训练集效果还可以,99.75%,实际上由于关于cifar10的训练进行的次数不多,之前用vgg16达到过1.000, 很难说这个比率是不是真的高,损失0.0082

  • 测试集74.39%,显而易见出现了过拟合的现象,loss的波动也非常大,

  • 考虑解决方案, 加入dropout(0.5)尝试,加入学习率衰减,是否因为模型过于复杂,因为resnet在Imagenet上的表现最好,Imagenet的图像容量要远大于cifar10

你可能感兴趣的:(基于keras的Resnet)