电子罗盘与陀螺仪

PSP2的六轴传感器系统(三轴加速度&3轴陀螺仪),3轴电子罗盘功能 是什么技术? 
 
三轴加速器就是感应XYZ(立体空间三个方向,前后左右上下)轴向上的加速,比如你突然把psp2往前推,psp2就知道你是在向前加速了,从而实现类似赛车加速的操作。三轴陀螺仪是分别感应Roll(左右倾斜)、Pitch(前后倾斜)、Yaw(左右摇摆)的全方位动态信息。总之三轴加速器是检测横向加速的,三轴陀螺仪是检测角度旋转和平衡的,合在一起称为六轴传感器。3DS、iphone上都有这个功能,不过支持此功能的游戏并不多。 三轴电子罗盘,其实就是数字指南针,在对方向作出检测的同时也进行了一些倾角补偿和温度补偿。简言之就是检测方向用的。

 

电子罗盘也叫数字指南针,是利用地磁场来定北极的一种方法。古代称为罗经,现代利用先进加工工艺生产的磁阻传感器为罗盘的数字化提供了有力的帮助。现在一般有用磁阻传感器和磁通门加工而成的电子罗盘。

虽然GPS在导航、定位、测速、定向方面有着广泛的应用,但由于其信号常被地形、地物遮挡,导致精度大大降低,甚至不能使用。尤其在高楼林立城区和植被茂密的林区,GPS信号的有效性仅为60%。并且在静止的情况下,GPS也无法给出航向信息。为弥补这一不足,可以采用组合导航定向的方法。电子罗盘产品正是为满足用户的此类需求而设计的。它可以对GPS信号进行有效补偿,保证导航定向信息100%有效,即使是在GPS信号失锁后也能正常工作,做到“丢星不丢向”。

当然,随着GPS技术的发展,采用双GPS接收机作为卫星信号传感器,利用载波测量技术和快速求解模糊度技术,精确计算出运动载体的方位角,同时可以输出俯仰角、位置、速度以及UTC等信息 也可以实现静止状态给出航向信息。目前市场典型XW-SC3600/3660定位定向系统,克服陀螺寻北的成本高、动态差和磁罗盘精度低、响应慢等缺点。

电子罗盘可以分为平面电子罗盘和三维电子罗盘。

平面电子罗盘要求用户在使用时必须保持罗盘的水平,否则当罗盘发生倾斜时,也会给出航向的变化而实际上航向并没有变化。虽然平面电子罗盘对使用时要求很高,但如果能保证罗盘所附载体始终水平的话,平面罗盘是一种性价比很好的选择。
三维电子罗盘克服了平面电子罗盘在使用中的严格限制,因为三维电子罗盘在其内部加入了倾角传感器,如果罗盘发生倾斜时可以对罗盘进行倾斜补偿,这样即使罗盘发生倾斜,航向数据依然准确无误。有时为了克服温度漂移,罗盘也可内置温度补偿,最大限度减少倾斜角和指向角的温度漂移。

三维电子罗盘由三维磁阻传感器、双轴倾角传感器和MCU构成。三维磁阻传感器用来测量地球磁场,倾角传感器是在磁力仪非水平状态时进行补偿;MCU处理磁力仪和倾角传感器的信号以及数据输出和软铁、硬铁补偿。该磁力仪是采用三个互相垂直的磁阻传感器,每个轴向上的传感器检测在该方向上的地磁场强度。向前的方向称为x方向的传感器检测地磁场在x方向的矢量值;向左或Y方向的传感器检测地磁场在Y方向的矢量值;向下或Z方向的传感器检测地磁场在Z方向的矢量值。每个方向的传感器的灵敏度都已根据在该方向上地磁场的分矢量调整到最佳点,并具有非常低的横轴灵敏度。传感器产生的模拟输出信号进行放大后送入MCU进行处理。磁场测量范围为±2Gauss。通过采用12位A/D转换器,磁力仪能够分辨出小于1mGauss的磁场变化量,我们便可通过该高分辨力来准确测量出200-300mGauss的X和Y方向的磁场强度,不论是在赤道上的向上变化还是在南北极的更低值位置。仅用地磁场在X和Y的两个分矢量值便可确定方位值:   Azimuth=arcTan(Y/X)   该关系式是在检测仪器与地表面平行时才成立。当仪器发生倾斜时,方位值的准确性将要受到很大的影响,该误差的大小取决于仪器所处的位置和倾斜角的大小。为减少该误差的影响,采用双轴倾角传感器来测量俯仰和侧倾角,这个俯仰角被定义为由前向后方向的角度变化;而侧倾角则为由左到右方向的角度变化。电子罗盘将俯仰和侧倾角的数据经过转换计算,将磁力仪在三个轴向上的矢量在原来的位置“拉”回到水平的位置。   标准的转换计算式如下:   Xr=Xcosα+Ysinαsinβ-Zcosβsinα   Yr=Xcosβ+Zsinβ   这里Xr和Yr为要转换到水平位置的值   α为俯仰角   β为侧倾角   从以上这三个计算公式可以看出,在整个补偿技术中Z轴向的矢量扮演一个非常重要的角色。要正确运用这些值,俯仰和侧倾角的数字必须时刻更新。采用双轴宽线性量程范围、高分辨率、温漂系数低的陶瓷基体电解质传感器来测量俯仰角和侧倾角,倾角数值经过电路板上的温度传感器补偿后得出的。编辑本段特点  总结一下,典型的数字罗盘具有以下特点:   1. 三轴磁阻效应传感器测量平面地磁场,双轴倾角补偿。   2. 高速高精度A/D转换。   3. 内置温度补偿,最大限度减少倾斜角和指向角的温度漂移。   4. 内置微处理器计算传感器与磁北夹角。   5. 具有简单有效的用户标校指令。   6. 具有指向零点修正功能。   7. 外壳结构防水,无磁。

电子罗盘的原理是测量地球磁场,如果在使用的环境中有除了有地球以外的磁场且这些磁场无法有效的屏蔽时,那么电子罗盘的使用就有很大的问题,这时只能考虑使用陀螺来测定航向了。应用场合
水平孔和垂直孔测量、水下勘探、飞行器导航、科学研究、教育培训、建筑物定位、设备维护、导航系统、仿真系统、GPS备份、汽车指南针、虚拟现实。

电子罗盘的分类  随着微电子集成技术以及加工工艺、材料技术的不断发展。电子罗盘的研究制造与运用也达到了一个前所未有的水平。目前电子罗盘按照有无倾角补偿可以分为平面电子罗盘和三维电子罗盘,也可以按照传感器的不同分为磁阻效应传感器、霍尔效应传感器和磁通门传感器。


目前基于磁电阻传感器的电子罗盘具有体积小、响应速度快等优点,优势明显,是电子罗盘的发展方向。

 

陀螺仪,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。

利用陀螺仪的动力学特性制成的各种仪表或装置,主要有以下几种:
陀螺方向仪  能给出飞行物体转弯角度和航向指示的陀螺装置。
陀螺罗盘  供航行和飞行物体作方向基准用的寻找并跟踪地理子午面的三自由度陀螺仪。
陀螺垂直仪  利用摆式敏感元件对三自由度陀螺仪施加修正力矩以指示地垂线的仪表,又称陀螺水平仪。陀螺垂直仪是除陀螺摆以外应用于航空和航海导航系统的又一种地垂线指示或量测仪表。
陀螺稳定器  稳定船体的陀螺装置。
速率陀螺仪  用以直接测定运载器角速率的二自由度陀螺装置。在远距离测量系统或自动控制、惯性导航平台中使用较多。
陀螺稳定平台  陀螺稳定平台可用来稳定测量仪器、天线等,并已广泛用于航空和航海的导航系统及火控、雷达的万向支架支承。
陀螺仪传感器  陀螺仪传感器原本是运用到直升机模型上的,现在已经被广泛运用于手机这类移动便携设备上(IPHONE的三轴陀螺仪技术)。
光纤陀螺仪  光纤陀螺仪是以光导纤维线圈为基础的敏感元件, 由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的变,决定了敏感元件的角位移。光纤陀螺仪与传统的机械陀螺仪相比,优点是全固态,没有旋转部件和摩擦部件,寿命长,动[1]态范围大,瞬时启动,结构简单,尺寸小,重量轻。与激光陀螺仪相比,光纤陀螺仪没有闭锁问题,也不用在石英块精密加工出光路,成本低。
激光陀螺仪  利用光程差来测量旋转角速度(Sagnac效应)。
MEMS陀螺仪    ADI公司是低成本的MEMS陀螺仪的主要制造商.基于MEMS 技术的陀螺因其成本低,能批量生产,目前已经能够广泛应用于汽车牵引控制系统、医用设备、军事设备等低成本需求应用中。

由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。

----摘自百度百科

你可能感兴趣的:(其他)