QuantizationParams
// Quantization parameters, determining the mapping of quantized values
// to real values (i.e. determining how quantized values are mathematically
// interpreted).
//
// The correspondence is as follows:
//
// real_value = scale * (quantized_value - zero_point);
//
// In other words, zero_point designates which quantized value corresponds to
// the real 0 value, and scale designates the difference between the real values
// corresponding to consecutive quantized values differing by 1.
struct QuantizationParams {
int32 zero_point = 0;
double scale = 0.;
};
FullyConnected
inline void FullyConnected(const uint8* input_data, const Dims<4>& input_dims,
int32 input_offset, const uint8* filter_data,
const Dims<4>& filter_dims, int32 filter_offset,
const int32* bias_data, const Dims<4>& bias_dims,
int32 output_offset, int32 output_multiplier,
int output_shift, int32 output_activation_min,
int32 output_activation_max, uint8* output_data,
const Dims<4>& output_dims,
gemmlowp::GemmContext* gemm_context) {
(void)gemm_context; // only used in optimized code.
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
// TODO(benoitjacob): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
// array of which dimension is the batch dimension in it.
const int batches = ArraySize(output_dims, 1) * ArraySize(output_dims, 2) *
ArraySize(output_dims, 3);
const int output_depth = MatchingArraySize(filter_dims, 1, output_dims, 0);
const int accum_depth = ArraySize(filter_dims, 0);
TFLITE_DCHECK(IsPackedWithoutStrides(input_dims));
TFLITE_DCHECK(IsPackedWithoutStrides(filter_dims));
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
int32 acc = 0;
for (int d = 0; d < accum_depth; ++d) {
int32 input_val = input_data[b * accum_depth + d];
int32 filter_val = filter_data[out_c * accum_depth + d];
acc += (filter_val + filter_offset) * (input_val + input_offset);
}
if (bias_data) {
acc += bias_data[Offset(bias_dims, out_c, 0, 0, 0)];
}
acc = MultiplyByQuantizedMultiplierSmallerThanOne(acc, output_multiplier,
output_shift);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[out_c + output_depth * b] = static_cast<uint8>(acc);
}
}
}
GetOrComputeMinMax
const MinMax& GetOrComputeMinMax(Model* model, const string& array_name) {
auto& array = model->GetArray(array_name);
// Normally we should have a MinMax recorded on this Array,
// so we just use it.
if (array.minmax != nullptr) {
return *array.minmax;
}
// We don't have a MinMax. That's bad news: we need
// the graph to provide MinMax info for all arrays in order
// for inference to reproduce faithfully the same quantization
// error as the training process had.
//
// But we still want to support a fallback for constant arrays,
// just using the plain min and max computed from array elements.
// We should hopefully never rely on that in production, as that
// will not give very good accuracy as that typically won't be
// exactly what the training process used. But it will be useful
// to allow easily trying out quantization even if the graph
// lacks some minmax information.
if (array.buffer != nullptr) {
LOG(WARNING)
<< "Constant array " << array_name
<< " lacks MinMax information. To make up for that, we will now compute"
<< " the MinMax from actual array elements. That will result in"
<< " quantization parameters that probably do not match whichever "
"arithmetic"
<< " was used during training, and thus will probably be a cause of "
"poor"
<< " inference accuracy.";
CHECK(array.buffer->type == ArrayDataType::kFloat);
const auto& data = array.GetBuffer<ArrayDataType::kFloat>().data;
// We always want [min, max] to contain 0.
float min = 0.f;
float max = 0.f;
for (auto val : data) {
min = std::min(min, val);
max = std::max(max, val);
}
auto& minmax = array.GetOrCreateMinMax();
minmax.min = min;
minmax.max = max;
return minmax;
}
LOG(FATAL) << "Array " << array_name
<< " does not have MinMax information, "
"and is not a constant array. Cannot "
"proceed with quantization.";
}
quantize_v2
# Define quantize_v2 here in order to make name the second-to-last attribute,
# because round_mode was added later.
@tf_export("quantize_v2")
@deprecation.deprecated(
"2017-10-25",
"`tf.quantize_v2` is deprecated, please use `tf.quantize` instead.")
def quantize_v2(input, # pylint: disable=redefined-builtin
min_range,
max_range,
T,
mode="MIN_COMBINED",
name=None,
round_mode="HALF_AWAY_FROM_ZERO"):
return gen_array_ops.quantize_v2(input,
min_range,
max_range,
T=T,
mode=mode,
name=name,
round_mode=round_mode)
quantize_v2.__doc__ = """Please use `tf.quantize` instead."""
# We want to expose tf.quantize instead of tf.quantize_v2; we can deprecate
# tf.quantize_v2 in next version of TensorFlow.
@tf_export("quantize")
def quantize(input, # pylint: disable=redefined-builtin
min_range,
max_range,
T,
mode="MIN_COMBINED",
round_mode="HALF_AWAY_FROM_ZERO",
name=None):
return gen_array_ops.quantize_v2(
input,
min_range,
max_range,
T,
mode=mode,
round_mode=round_mode,
name=name)
op_def_library.py
TensorFlow Quantize API
tf.quantize(
input,
min_range,
max_range,
T,
mode='MIN_COMBINED',
round_mode='HALF_AWAY_FROM_ZERO',
name=None
)
out[i] = (in[i] - min_range) * range(T) / (max_range - min_range)
if T == qint8, out[i] -= (range(T) + 1) / 2.0
TensorFlow quantize代码