目录
错误处理
断言
logging
单元测试
setUp()和tearDown()方法
打开文件的函数open()
,成功时返回文件描述符(就是一个整数),出错时返回-1
。
try:
foo()
except ValueError as e:
print('ValueError')
except UnicodeError as e:
print('UnicodeError')
Python的错误其实也是class,所有的错误类型都继承自BaseException
,所以在使用except
时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”
第二个except
永远也捕获不到UnicodeError
,因为UnicodeError
是ValueError
的子类,如果有,也被第一个except
给捕获了。
Python所有的错误都是从BaseException
类派生的,常见的错误类型和继承关系看这里:
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
凡是用print()
来辅助查看的地方,都可以用断言(assert)来替代,如果断言失败,assert
语句本身就会抛出AssertionError
logging
不会抛出错误,而且可以输出到文件
import logging
s = '0'
n = int(s)
logging.info('n = %d' % n)
print(10 / n)
运行,发现除了ZeroDivisionError
,没有任何信息,在import logging
之后添加一行配置再试试:
import logging
logging.basicConfig(level=logging.INFO)
看到输出了:
$ python err.py
INFO:root:n = 0
Traceback (most recent call last):
File "err.py", line 8, in
print(10 / n)
ZeroDivisionError: division by zero
这就是logging
的好处,它允许你指定记录信息的级别,
日志等级分别有以下几种:
CRITICAL : 'CRITICAL',
ERROR : 'ERROR',
WARNING : 'WARNING',
INFO : 'INFO',
DEBUG : 'DEBUG',
NOTSET : 'NOTSET',
当我们指定level=INFO
时,logging.debug
就不起作用了。同理,指定level=WARNING
后,debug
和info,notset
就不起作用了
比如对函数abs()
,我们可以编写出以下几个测试用例:
输入正数,比如1
、1.2
、0.99
,期待返回值与输入相同;
输入负数,比如-1
、-1.2
、-0.99
,期待返回值与输入相反;
输入0
,期待返回0
;
输入非数值类型,比如None
、[]
、{}
,期待抛出TypeError
。
把上面的测试用例放到一个测试模块里,就是一个完整的单元测试。
我们来编写一个Dict
类,这个类的行为和dict
一致,但是可以通过属性来访问,用起来就像下面这样:
>>> d = Dict(a=1, b=2)
>>> d['a']
1
>>> d.a
1
mydict.py
代码如下:
class Dict(dict):
def __init__(self, **kw):
super().__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
为了编写单元测试,我们需要引入Python自带的unittest
模块,编写mydict_test.py
如下:
import unittest
from mydict import Dict
class TestDict(unittest.TestCase):
def test_init(self):
d = Dict(a=1, b='test')
self.assertEqual(d.a, 1)
self.assertEqual(d.b, 'test')
self.assertTrue(isinstance(d, dict))
def test_key(self):
d = Dict()
d['key'] = 'value'
self.assertEqual(d.key, 'value')
def test_attr(self):
d = Dict()
d.key = 'value'
self.assertTrue('key' in d)
self.assertEqual(d['key'], 'value')
def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError): #期待抛出指定类型的Error,比如通过d['empty']访问不存在的key时,断言会抛出KeyError
value = d['empty']
def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError):
value = d.empty
编写单元测试时,我们需要编写一个测试类,从unittest.TestCase
继承。
以test
开头的方法就是测试方法,不以test
开头的方法不被认为是测试方法,测试的时候不会被执行。
单元测试,最简单的运行方式是在mydict_test.py
的最后加上两行代码:
if __name__ == '__main__':
unittest.main()
这样就可以把mydict_test.py
当做正常的python脚本运行:
$ python mydict_test.py
另一种方法是在命令行通过参数-m unittest
直接运行单元测试:
$ python -m unittest mydict_test
.....
----------------------------------------------------------------------
Ran 5 tests in 0.000s
OK
这是推荐的做法,因为这样可以一次批量运行很多单元测试,并且,有很多工具可以自动来运行这些单元测试
setUp()
和tearDown()
方法这两个方法会分别在每调用一个测试方法的前后分别被执行。
设想你的测试需要启动一个数据库,这时,就可以在setUp()
方法中连接数据库,在tearDown()
方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:
class TestDict(unittest.TestCase):
def setUp(self):
print('setUp...')
def tearDown(self):
print('tearDown...')
运行测试:每个测试方法调用前后是否会打印出setUp
和tearDown
。