- Flink之kafka消息解析器2
怎么才能努力学习啊
flinkkafka大数据
概要昨天的话题,FlinkSource消费kafka数据自定义反序列化,获取自己想要的数据和类型实现过程publicclassTestWithMetadataDeserializationSchemaimplementsKafkaRecordDeserializationSchema{第一步:自定义实现这个接口,这里的泛型一般的都是自定义类@Overridepublicvoiddeserializ
- Flink之kafka消费数据
怎么才能努力学习啊
flinkkafka大数据
场景:本地构建Flink程序问题描述消费Kafka的数据时,使用Flink新的KakfaSource。会报如下错误KafkaSourcekafkaSource=KafkaSource.builder().setBootstrapServers(kafkaProperties.getProperty("kafka.bootstrap.servers")).setTopics("test2").set
- 【Flink 实战系列】Flink CDC 实时同步 Mysql 全量加增量数据到 Hudi
JasonLee实时计算
Flink实战系列hbasespark大数据
【Flink实战系列】FlinkCDC实时同步Mysql全量加增量数据到Hudi前言FlinkCDC是基于Flink开发的变化数据获取组件(Changedatacapture),简单的说就是来捕获变更的数据,ApacheHudi是一个数据湖平台,又支持对数据做增删改查操作,所以FlinkCDC可以很好的和Hudi结合起来,打造实时数仓,实时湖仓一体的架构,下面就来演示一下同步的过程。环境组件版本F
- Flink系列-2、Flink架构体系
技术武器库
大数据专栏flink架构jvm
版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。大数据系列文章目录官方网址:https://flink.apache.org/学习资料:https://flink-learning.org.cn/目录Flink中的重要角⾊Flink数据流编程模型Libraries支持Flink集群搭建Local本地模式(开发测试)Standalone-伪分布环境(开
- Flink 的核心特点和概念
Ray.1998
大数据大数据数据分析数据仓库flink
Flink是一个流式处理框架,专注于高吞吐量、低延迟的数据流处理。它能处理无限流(即实时数据流)和有限流(批处理),具有很强的灵活性和可扩展性,广泛应用于实时数据分析、监控系统、数据处理平台等场景。下面是一些关于Flink的核心特点和概念:1.流处理和批处理流处理(StreamProcessing):Flink的核心就是流处理,它能够实时处理不断到达的数据流。Flink会将数据划分成时间窗口来处理
- Flink的流处理和批处理
Ray.1998
大数据flink大数据数据挖掘数据分析
1.流处理(StreamProcessing)流处理是Flink的核心功能之一,主要用于处理无限流数据,也就是不断到达的数据。它能够实时处理数据流,并对每个数据元素执行操作。流处理中的数据没有预定的边界,它的特征是持续到达,因此,流处理必须实时处理每个事件,而不能等到所有数据都到齐后再进行处理。核心特点:实时性:流处理的最大优势是实时性。Flink允许对实时数据流进行分析,计算和处理,几乎是对数据
- HUDI-0.11.0 BUCKET index on Flink 特性试用
_Magic
BigDataflinkhudi
1.背景在0.10.1版本下,使用默认的index(FLINK_STATE),在upsert模式下,几十亿级别的数据更新会消耗大量内存,并且检查点(checkpoint)时间过长。因此,切换到0.11.0的BUCKET索引。当前环境:Flink1.13.2+Hudi0.11.0(master2022.04.11)+COW+HDFS。关键配置项:index.type=BUCKEThoodie.buc
- Kafka 迁移 AutoMQ 时 Flink 位点管理的挑战与解决方案
AutoMQ
云计算云原生Kafka消息计算大数据AWSAutoMQ阿里云腾讯云GCP
编辑导读:AutoMQ是一款与ApacheKafka100%完全兼容的新一代Kafka,可以做到至多10倍的成本降低和极速的弹性。凭借其与Kafka的完全兼容性可以与用户已有的Flink等大数据基础设施进行轻松整合。Flink是重要的流处理引擎,与Kafka有着密切的关系。本文重点介绍了当用户需要将生产Kafka集群迁移到AutoMQ时,如何处理好Flink的位点来确保整体迁移的平滑过渡。引言在云
- 20250120 Flink 的 缓冲区超时(Buffer Timeout)
靈臺清明
flink
Flink的缓冲区超时(BufferTimeout)机制确实类似于一辆车等待乘客的过程,如果车每次只载一个乘客就发车,会导致效率低下,资源浪费。同样,在Flink的数据流处理中,缓冲区超时的设置对吞吐量和延迟的权衡至关重要。以下是更详细的原因解析和背后的机制:1.什么是缓冲区超时(BufferTimeout)?在Flink中,算子之间的数据通过网络传输。为了提高传输效率,Flink会在发送数据之前
- Java 驱动大数据流处理:Storm 与 Flink 入门 (大数据)
用心去追梦
大数据javastorm
Java是一种广泛使用的编程语言,特别适用于企业级应用开发。随着数据量的不断增长,处理大数据流成为了现代软件开发中的一个重要领域。ApacheStorm和ApacheFlink是两个用于处理大规模数据流的开源框架,它们都支持用Java编写的应用程序。下面将简要介绍这两个框架,并提供一些入门指导。ApacheStormApacheStorm是一个免费、开源的分布式实时计算系统。Storm让用户能够轻
- SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比
不二人生
#数据集成工具SeaTunnel
文章目录SeaTunnel与DataX、Sqoop、Flume、FlinkCDC对比同类产品横向对比2.1、高可用、健壮的容错机制2.2、部署难度和运行模式2.3、支持的数据源丰富度2.4、内存资源占用2.5、数据库连接占用2.6、自动建表2.7、整库同步2.8、断点续传2.9、多引擎支持2.10、数据转换算子2.11、性能2.12、离线同步2.13、增量同步&实时同步2.14、CDC同步2.15
- 20250120 深入了解 Apache Flink 的 Checkpointing
靈臺清明
Flinkapacheflink大数据
ApacheFlink是一种用于实时流处理和批处理的分布式计算框架。在实时流处理任务中,保证数据的一致性和任务的容错性是至关重要的,而Flink的Checkpointing机制正是实现这一目标的核心技术。本文将详细介绍Flink的Checkpointing,包括其概念、原理、配置和实际应用。什么是Checkpointing?Checkpointing是Flink提供的一种用于容错的机制。它会在流处
- Flink Standalone 方案中解决挂机问题
星尘幻宇科技
flink大数据
Standalone中可以配置HighAvailability(HA)部署和配置首先了解Flink实际运行时包括两类进程:JobManager(又称为JobMaster):协调Task的分布式执行,包括调度Task、协调创Checkpoint以及当Jobfailover时协调各个Task从Checkpoint恢复等。TaskManager(又称为Worker):执行Dataflow中的Tasks,
- 大数据学习(37)- Flink运行时架构
viperrrrrrr
学习flink大数据
&&大数据学习&&系列专栏:哲学语录:承认自己的无知,乃是开启智慧的大门如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦1)作业管理器(JobManager)JobManager是一个Flink集群中任务管理和调度的核心,是控制应用执行的主进程。也就是说,每个应用都应该被唯一的JobManager所控制执行。JobManger又包含3个不同的组件。(1)JobMasterJobM
- Flink CDC MySQL同步MySQL错误记录
lingllllove
flinkmysql大数据
FlinkCDC简介FlinkCDC(ChangeDataCapture)是一种高效的数据同步工具,利用Flink强大的实时流处理能力,从MySQL等数据库捕获数据变更,并将这些变更实时同步到目标数据库。本文将详细介绍FlinkCDCMySQL同步到MySQL时常见的错误记录及其解决方法。常见错误及解决方法1.连接错误错误信息:FailedtoconnecttoMySQLserver.可能原因:
- FFA 2024 「流批一体」专场:探索在不同场景的流批一体
Apache Flink
FlinkForwardAsia2024即将盛大开幕!作为ApacheFlink社区备受期待的年度盛会之一,本届大会将于11月29至30日在上海隆重举行。FlinkForwardAsia(简称FFA)是由Apache官方授权的社区技术大会,旨在汇聚领先的行业实践与技术动态。在众多合作伙伴和技术开发者的支持下,FFA已成功举办六届。适逢ApacheFlink诞生10周年,今年的FFA将与广大开发者分
- Scaleph:基于Kubernetes的开放式数据平台
尤淞渊
Scaleph:基于Kubernetes的开放式数据平台scalephOpendataplatformbasedonFlinkandKubernetes,supportsweb-uiclick-and-dropdataintegrationwithSeaTunnelbackendedbyFlinkengine,flinkonlinesqldevelopmentbackendedbyFlinkSql
- 深入Flink : 源码解读数据倾斜代码落地
java
大家好,我是大圣,很高兴又和大家见面。上篇文章,我们详细说了通过使得Flink每个并行子任务上面都有对应的key来解决数据倾斜。但是我们只说了这个方案的思想和设计理解,还没有把这种方案真正应用到我们的Flink任务当中。这篇文章我们就重点把这种方案实践到我们写的Flink任务当中。什么是数据倾斜解决方案回顾代码如下:publicclassRebalanceKeyCreator{privateint
- Flink(十):DataStream API (七) 状态
Leven199527
Flinkflink大数据
1.状态的定义在ApacheFlink中,状态(State)是指在数据流处理过程中需要持久化和追踪的中间数据,它允许Flink在处理事件时保持上下文信息,从而支持复杂的流式计算任务,如聚合、窗口计算、联接等。状态是Flink处理有状态操作(如窗口、时间戳操作、聚合等)的核心组成部分。2.状态的类型Flink提供了强大的状态管理机制,允许应用程序在分布式环境中处理状态,保证高可用性和容错性。Flin
- Apache Flink
morcake
flink大数据
"ApacheFlinkistheopensourcestreamprocessingframeworkfordistributed,high-performance,ready-to-use,andaccuratestreamprocessingapplications."ApacheFlinkisaframeworkanddistributedprocessingengineforstatef
- 一文帮你搞懂flink中窗口的分类(一)
知否&知否
flink中窗口及其函数分类flink大数据
Window可以分成两类:CountWindow:按照指定的数据条数生成一个Window,与时间无关。滚动计数窗口,每隔N条数据,统计前N条数据滑动计数窗口,每隔N条数据,统计前M条数据TimeWindow:按照时间生成Window。(重点)滚动时间窗口,每隔N时间,统计前N时间范围内的数据,窗口长度N,滑动距离N滑动时间窗口,每隔N时间,统计前M时间范围内的数据,窗口长度M,滑动距离N还有一种特
- Java 大视界 -- Java 驱动大数据流处理:Storm 与 Flink 入门(六)
青云交
大数据新视界Java大视界FlinkStorm大数据流处理实时数据处理架构实时监控数据分析java
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 【大数据】Flink CDC 实时同步mysql数据
小码农叔叔
springboot入门到精通大数据FlinkCDCFlinkCDC同步数据FlinkCDC数据同步
目录一、前言二、FlinkCDC介绍2.1什么是FlinkCDC2.2FlinkCDC特点2.3FlinkCDC核心工作原理2.4FlinkCDC使用场景三、常用的数据同步方案对比3.1数据同步概述3.1.1数据同步来源3.2常用的数据同步方案汇总3.3为什么推荐FlinkCDC3.4FlinkCDC适用范围3.5FlinkCDC不同版本对比3.5.1FlinkCDC1.x3.5.2FlinkCD
- Flink 使用 Kafka 作为数据源时遇到了偏移量提交失败的问题
java我跟你拼了
异常笔记flinkkafka大数据
具体的错误日志21:43:57.069[KafkaFetcherforSource:CustomSource->Map->Filter(1/1)#2]ERRORorg.apache.kafka.clients.consumer.internals.ConsumerCoordinator-[ConsumerclientId=consumer-my-group-6,groupId=my-group]O
- 2、Flink 在 DataStream 和 Table 之间进行转换
猫猫爱吃小鱼粮
FlinkSQLflink大数据
1.概述TableAPI和DataStreamAPI都可以处理有界流和无界流。DataStreamAPI提供了流处理的基础(时间、状态和数据流管理);TableAPI抽象了许多内部内容,并提供了一个结构化和声明性的API;在处理历史数据时,需要管理有边界的流;无边界流出现在实时处理场景中,这些场景可能需要先使用历史数据进行初始化。为了高效执行,这两个API都以优化的批处理执行模式处理有界流。由于批
- Flink 常见面试题
知否&知否
flink大数据kafka
1、Flink的四大特征(基石)checkpoint:基于Chandy-Lamport算法,实现了分布式一致性快照,提供了一致性的语义。State:丰富的StateAPI。ValueState,ListState,MapState,BroadcastState.Time:实现了Watemark机制,乱序数据处理,迟到数据容忍。Window:开箱即用的滚动、滑动、会话窗口。以及灵活的自定义窗口。2、
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- Apache Flink 2.0-preview released
flink大数据
ApacheFlink社区正在积极准备Flink2.0,这是自Flink1.0发布8年以来的首次大版本发布。作为一个重要的里程碑,Flink2.0将引入许多激动人心的功能和改进,以及一些不兼容的破坏性变更。为了促进用户和上下游项目(例如,连接器)尽早适配这些变更,提前尝试这些令人兴奋的新功能同时收集反馈,我们现在提供了Flink2.0的预览版本。注意:Flink2.0预览版不是稳定版本,请不要应用
- 2024年最新Python:Page Object设计模式_python page object,BTAJ大厂最新面试题汇集
m0_60707708
程序员python设计模式开发语言
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- 2024年总结:大转向
年度总结
本文于2025年1月2号首发于公众号“狗哥琐话”。2024年是个打工人苦命年,我看到几乎每个人都比以往辛苦。这让我想起了六字真言,钱难赚屎难吃。职业转向今年我在职业上尝试做了一个转向,具体的结果可能需要比较长的时间来检验我选择是否正确,所以转向的细节我就不全部展开了,可以确定是我依然会专注在Infra和BigData,比如今年我发布了SparkSQL和FlinkSQL的IDEA提效插件。那么我为什
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟