CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks

FlowNet: Learning Optical Flow with Convolutional Networks
ICCV2015
Code: https://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15/

本文使用CNN网络来计算光流,实现端对端训练,自己制作了个训练数据库 Flying Chairs
CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第1张图片

  1. Network Architectures
    因为最后的结果需要得到像素级别的,所以需要对CNN网络得到卷积特征图进行方法

光流计算的输入是一个图像对,这里我们尝试了两个网络结构 FlowNetSimple (top) and FlowNetCorr (bottom)
CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第2张图片
FlowNetSimple 直接将两个图像放到一起输入网络
FlowNetCorr 首先分别处理单个图像,然后再用一个 correlation layer 将两个图像的特征结合起来

特征图放大网络结构 Expanding part
CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第3张图片

经过 Expanding part 处理,CNN 特征图放大了4倍,和输入图像尺寸相比缩小了4倍,再放大4倍达到输入图像尺寸有两种方法:
1)FCN中的 bilinear upsampling
2)Variational refinement
CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第4张图片

4.1. Existing Datasets
CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第5张图片
合成的数据库Flying Chairs
CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第6张图片

  1. Experiments
    CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第7张图片

CNN光流计算--FlowNet: Learning Optical Flow with Convolutional Networks_第8张图片

FlowNet2.0 就比较厉害了!

你可能感兴趣的:(深度学习应用)