时间序列分析(一) 如何判断序列是否平稳

时间序列分析(一) 如何判断序列是否平稳

序列平稳不平稳,一般采用两种方法:

第一种:看图法

图是指时序图,例如(eviews画滴):

 

分析:什么样的图不平稳,先说下什么是平稳,平稳就是围绕着一个常数上下波动。

看看上面这个图,很明显的增长趋势,不平稳。

 

第二种:自相关系数和偏相关系数

还以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。

分析:判断平稳与否的话,用自相关图和偏相关图就可以了。

平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。再就是拖尾,拖尾就是有一个衰减的趋势,但是不都为 0

自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形。

 

 

下面是通过自相关的其他功能

如果自相关是拖尾,偏相关截尾,则用 AR 算法

如果自相关截尾,偏相关拖尾,则用 MA 算法

如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA ARMA 算法的扩展版,用法类似

不平稳,怎么办?

答案是差分,什么是差分?不介绍了,给个链接:

http://zh.wikipedia.org/wiki/%E5%B7%AE%E5%88%86

还是上面那个序列,两种方法都证明他是不靠谱的,不平稳的。确定不平稳后,依次进行1阶、2阶、3阶...差分,直到平稳位置。先来个一阶差分,上图。



 从图上看,一阶差分的效果不错,看着是平稳的。

 

你可能感兴趣的:(Mahout)