(1)tensorflow存储图和训练好的权重
from __future__ import absolute_import, unicode_literals import input_data import tensorflow as tf import shutil import os.path export_dir = './tmp/expert-export' if os.path.exists(export_dir): shutil.rmtree(export_dir) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') mnist = input_data.read_data_sets("./tmp/data/", one_hot=True) g = tf.Graph() with g.as_default(): x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess = tf.Session() sess.run(tf.initialize_all_variables()) for i in range(201): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval( {x: batch[0], y_: batch[1], keep_prob: 1.0}, sess) print "step %d, training accuracy %g" % (i, train_accuracy) train_step.run( {x: batch[0], y_: batch[1], keep_prob: 0.5}, sess) print "test accuracy %g" % accuracy.eval( {x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}, sess) # Store variable _W_conv1 = W_conv1.eval(sess) _b_conv1 = b_conv1.eval(sess) _W_conv2 = W_conv2.eval(sess) _b_conv2 = b_conv2.eval(sess) _W_fc1 = W_fc1.eval(sess) _b_fc1 = b_fc1.eval(sess) _W_fc2 = W_fc2.eval(sess) _b_fc2 = b_fc2.eval(sess) sess.close() # Create new graph for exporting g_2 = tf.Graph() with g_2.as_default(): x_2 = tf.placeholder("float", shape=[None, 784], name="input") W_conv1_2 = tf.constant(_W_conv1, name="constant_W_conv1") b_conv1_2 = tf.constant(_b_conv1, name="constant_b_conv1") x_image_2 = tf.reshape(x_2, [-1, 28, 28, 1]) h_conv1_2 = tf.nn.relu(conv2d(x_image_2, W_conv1_2) + b_conv1_2) h_pool1_2 = max_pool_2x2(h_conv1_2) W_conv2_2 = tf.constant(_W_conv2, name="constant_W_conv2") b_conv2_2 = tf.constant(_b_conv2, name="constant_b_conv2") h_conv2_2 = tf.nn.relu(conv2d(h_pool1_2, W_conv2_2) + b_conv2_2) h_pool2_2 = max_pool_2x2(h_conv2_2) W_fc1_2 = tf.constant(_W_fc1, name="constant_W_fc1") b_fc1_2 = tf.constant(_b_fc1, name="constant_b_fc1") h_pool2_flat_2 = tf.reshape(h_pool2_2, [-1, 7 * 7 * 64]) h_fc1_2 = tf.nn.relu(tf.matmul(h_pool2_flat_2, W_fc1_2) + b_fc1_2) W_fc2_2 = tf.constant(_W_fc2, name="constant_W_fc2") b_fc2_2 = tf.constant(_b_fc2, name="constant_b_fc2") # DropOut is skipped for exported graph. y_conv_2 = tf.nn.softmax(tf.matmul(h_fc1_2, W_fc2_2) + b_fc2_2, name="output") sess_2 = tf.Session() init_2 = tf.initialize_all_variables(); sess_2.run(init_2) graph_def = g_2.as_graph_def() tf.train.write_graph(graph_def, export_dir, 'expert-graph.pb', as_text=False) # Test trained model y__2 = tf.placeholder("float", [None, 10]) correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y__2, 1)) accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float")) print "check accuracy %g" % accuracy_2.eval( {x_2: mnist.test.images, y__2: mnist.test.labels}, sess_2) 运行结果 /usr/bin/python2.7 /home/acer/PycharmProjects/trainer-script-minist/expert.py Extracting ./tmp/data/train-images-idx3-ubyte.gz Extracting ./tmp/data/train-labels-idx1-ubyte.gz Extracting ./tmp/data/t10k-images-idx3-ubyte.gz Extracting ./tmp/data/t10k-labels-idx1-ubyte.gz step 0, training accuracy 0.1 step 100, training accuracy 0.84 step 200, training accuracy 0.94 test accuracy 0.8998 check accuracy 0.8998 Process finished with exit code 0
读取存储的.pb并使用
#encoding:uft-8 #读取存储的图,可运行 from __future__ import absolute_import, unicode_literals import input_data import tensorflow as tf import shutil import os.path mnist = input_data.read_data_sets("./tmp/data/", one_hot=True) # produces the expected result. x_2 = tf.placeholder("float", shape=[None, 784], name="input") y__2 = tf.placeholder("float", [None, 10]) with tf.Graph().as_default(): output_graph_def = tf.GraphDef() output_graph_path = './tmp/expert-export/expert-graph.pb' #sess.graph.add_to_collection("input", mnist.test.images) with open(output_graph_path, "rb") as f: output_graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(output_graph_def, name="") with tf.Session() as sess: tf.initialize_all_variables().run() input_x = sess.graph.get_tensor_by_name("input:0") print input_x output = sess.graph.get_tensor_by_name("output:0") print output y_conv_2 = sess.run(output,{input_x:mnist.test.images}) print "y_conv_2", y_conv_2 # Test trained model #y__2 = tf.placeholder("float", [None, 10]) y__2 = mnist.test.labels; correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y__2, 1)) print "correct_prediction_2", correct_prediction_2 accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float")) print "accuracy_2", accuracy_2 print "check accuracy %g" % accuracy_2.eval() 运行结果:/usr/bin/python2.7 /home/acer/PycharmProjects/trainer-script-minist/testexpert.py