opencv3 图像检索以及基于图像描述符的搜索

本章主要介绍如何检测图像特征以及如何为描述符提取特征

特征检测算法

       图像特征就是有意义的图像区域,该区域具有独特性或易于识别性。因此,角点高密度区域是很好的特征,而大量重复的模式或低密度区域则不是好的特征。边缘可以将图像分为两个区域,因此也可以看作好的特征。斑点(与周围有很大差点别的图像区域)也是有意义的特征。

       大多数特征检测算法都会涉及图像的角点,边和斑点的识别,也有涉及脊向的概念,可以认为脊向的概念,可以认为脊向是细长物体的对称轴(例如:图像识别中的一条路)

       检测国际象棋角点特征:

import cv2
import numpy as np
import sys

img = cv2.imread('chess_board.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 23, 0.04)
img[dst>0.01 * dst.max()] = [0, 0, 255] 
#while (True):
cv2.imshow('corners', img)
# if cv2.waitKey(int(1000 / 12)) & 0xff == ord("q"):
#     break
cv2.waitKey(0)
cv2.destroyAllWindows()

cornerHarris函数中最重要的参数是第三个,该参数限定了sobel算子的中孔,sobel算子通过对图像行列的变化来检测边缘,sobel算子会通过核kernel来完成检测。该参数定义了角点检测的敏感度,其取值必须介于3和31之间的奇数。如果将参数设置为3,当检测到方块的边界时,棋盘中褐色方块的所有对角线都会被认为时角点。它的第二个参数被设置可以改变标记焦点的记号大小

输出:

参数=23时:

opencv3 图像检索以及基于图像描述符的搜索_第1张图片

参数=3时:

opencv3 图像检索以及基于图像描述符的搜索_第2张图片


通过sift得到充满角点和特征的图像

import cv2
import sys
import numpy as np

imgpath = 'varese.jpg'
img = cv2.imread(imgpath)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#创建一个sift对象
sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray,None)
"""
这里的标志4穿个drawKeypoints函数,标志值4其实是下面这个cv2模块的属性值 
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINT
这个代码对图像的每个关键点都绘制了圆圈和方向
"""
img = cv2.drawKeypoints(image=img, outImage=img, keypoints = keypoints, flags = 4, color = (51, 163, 236))


cv2.imshow('sift_keypoints', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

opencv3 图像检索以及基于图像描述符的搜索_第3张图片

SIFT对象会使用DoG检测关键点,并且对每个关键点周围的区域计算特征向量,由方法名称我们就可以知道,它主要包括两个操作:检测和计算,操作的返回值是关键点信息和描述符,最后在图像上绘制关键点

SURF采用快速Hessian算法检测关键点

SURF会提取特征

import cv2
import sys
import numpy as np

#imgpath = sys.argv[1]
imgpath = 'varese.jpg'
img = cv2.imread(imgpath)
#alg = sys.argv[2]
alg = 'SURF'

def fd(algorithm):
  algorithms = {
    "SIFT": cv2.xfeatures2d.SIFT_create(),
    "SURF": cv2.xfeatures2d.SURF_create(float(sys.argv[3]) if len(sys.argv) == 4 else 8000),
    "ORB": cv2.ORB_create()
  }
  return algorithms[algorithm]

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

fd_alg = fd(alg)
keypoints, descriptor = fd_alg.detectAndCompute(gray,None)

img = cv2.drawKeypoints(image=img, outImage=img, keypoints = keypoints, flags = 4, color = (51, 163, 236))

cv2.imshow('keypoints', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

这幅图像是由SURF算法处理出来的,所采用的hessian阈值为8000,阈值越高,能识别的特征就越少

输出:

opencv3 图像检索以及基于图像描述符的搜索_第4张图片


基于ORB的特征检测和特征匹配:

SIFT(1999年提出)是一种新算法,SURF(2006年提出)是一种更加新的算法,ORB(2011)是刚起步 用来代替前两者的,ORB是将基于FAST关键点检测技术和基于BRIEF描述符的技术相结合

下面分别介绍一下

FAST算法:

其中匹配算法用的是暴力匹配Brute-Force

import numpy as np
import cv2
from matplotlib import pyplot as plt

# query and test images
img1 = cv2.imread('manowar_logo.png',0)
img2 = cv2.imread('manowar_single.jpg',0)

# create the ORB detector
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(img1,None)
kp2, des2 = orb.detectAndCompute(img2,None)

# brute force matching
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1,des2)

# Sort by distance.
matches = sorted(matches, key = lambda x:x.distance)
img3 = cv2.drawMatches(img1,kp1,img2,kp2, matches[:25], img2,flags=2)

plt.imshow(img3),
plt.show()

输出:

opencv3 图像检索以及基于图像描述符的搜索_第5张图片

KNN匹配

与上面那个例子不同的是,这边用knn来进行匹配,

import cv2
import numpy as np
import matplotlib.pyplot as plt
p1 = cv2.imread('manowar_logo.png')
p2 = cv2.imread('manowar_single.jpg')
grayp1 = cv2.cvtColor(p1, cv2.IMREAD_GRAYSCALE)
grayp2 = cv2.cvtColor(p2, cv2.IMREAD_GRAYSCALE)
orb = cv2.ORB_create()
keyp1 ,desp1= orb.detectAndCompute(grayp1, None)
keyp2 ,desp2= orb.detectAndCompute(grayp2, None)
 
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
 
KnnMatches = bf.knnMatch(desp1, desp2, k=1)
KnnMatchImg = cv2.drawMatchesKnn(p1, keyp1, p2, keyp2, KnnMatches[:50],
                               p2, flags=2)
plt.figure(figsize=(15,8))
plt.imshow(KnnMatchImg)
plt.show()

输出:

opencv3 图像检索以及基于图像描述符的搜索_第6张图片


FLANN匹配

    FLANN具有一种内部机制,该机制可以根据数据本身选择最合适的算法来处理数据,经验证,FLANN比其他的最近邻搜索软件快10倍。

    FLANN内部可以选择LinearIndex、KTreeIndex、KMeansIndex、CompositeIndex和AutotuneIndex用来配置索引,这里选择KTreeIndex配置索引(只需指定待处理密度书的数量、最理想的数量在1~16之间),并且KtreeIndex非常灵活(kd-trees)可被并行处理,searchParams字典只包含一个字段checks,用来指定索引树要被遍历的次数,该值越高,计算匹配花费的时间就越长,但也会越准确。

    实际上 匹配效果很大程度取决于输入,5 kd-trees和50 checks总能取得具有合理精度的结果,而且在很短时间内就能完成

import numpy as np
import cv2
from matplotlib import pyplot as plt

queryImage = cv2.imread('bathory_album.jpg',0)
trainingImage = cv2.imread('bathory_vinyls.jpg',0)

# create SIFT and detect/compute
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(queryImage,None)
kp2, des2 = sift.detectAndCompute(trainingImage,None)

# FLANN matcher parameters
#FLANN_INDEX_KDTREE = 0
indexParams = dict(algorithm = 0, trees = 5)
searchParams = dict(checks=50)   # or pass empty dictionary

flann = cv2.FlannBasedMatcher(indexParams,searchParams)

matches = flann.knnMatch(des1,des2,k=2)

# prepare an empty mask to draw good matches
matchesMask = [[0,0] for i in range(len(matches))]

# David G. Lowe's ratio test, populate the mask
for i,(m,n) in enumerate(matches):
    if m.distance < 0.7*n.distance:
        matchesMask[i]=[1,0]

drawParams = dict(matchColor = (0,255,0),
                   singlePointColor = (255,0,0),
                   matchesMask = matchesMask,
                   flags = 0)

resultImage = cv2.drawMatchesKnn(queryImage,kp1,trainingImage,kp2,matches,None,**drawParams)

plt.imshow(resultImage,),plt.show()

输出:

opencv3 图像检索以及基于图像描述符的搜索_第7张图片

FLANN的单应性匹配:

    正确识别出右侧图像,画出了关键点的匹配线段,而且还花了一个白色边框,用来展示图像seed目标在右侧发生投影畸变的效果

import numpy as np
import cv2
from matplotlib import pyplot as plt

MIN_MATCH_COUNT = 10

img1 = cv2.imread('bb.jpg',0)
img2 = cv2.imread('color2.jpg',0)

# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()

# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)

flann = cv2.FlannBasedMatcher(index_params, search_params)

matches = flann.knnMatch(des1,des2,k=2)

# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
    if m.distance < 0.7*n.distance:
        good.append(m)

if len(good)>MIN_MATCH_COUNT:
    src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
    dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
    matchesMask = mask.ravel().tolist()

    h,w = img1.shape
    pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
    dst = cv2.perspectiveTransform(pts,M)

    img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)

else:
    print ("Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT))
    matchesMask = None

draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                   singlePointColor = None,
                   matchesMask = matchesMask, # draw only inliers
                   flags = 2)

img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)

plt.imshow(img3, 'gray'),plt.show()

输出:

opencv3 图像检索以及基于图像描述符的搜索_第8张图片


基于纹身取证的应用程序示例:

首先得将图像描述符保存到文件中,好处是,当两幅图像进行匹配和单应性分析时,不用每次都重建描述符,应用程序每次都会扫描保存图像的文件夹,并创建相应的描述符文件,可供后面搜索时使用,

文件存放:

opencv3 图像检索以及基于图像描述符的搜索_第9张图片


from os.path import join
from os import walk
import numpy as np
import cv2
from sys import argv

# create an array of filenames
folder = './image'
query = cv2.imread(join(folder, "tattoo_seed.jpg"), 0)

# create files, images, descriptors globals
files = []
images = []
descriptors = []
for (dirpath, dirnames, filenames) in walk(folder):
    files.extend(filenames)
    for f in files:
        if f.endswith("npy") and f != "tattoo_seed.npy":
            descriptors.append(f)
    print (descriptors)

# create the sift detector
sift = cv2.xfeatures2d.SIFT_create()
query_kp, query_ds = sift.detectAndCompute(query, None)

# create FLANN matcher
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)

# minimum number of matches
MIN_MATCH_COUNT = 10

potential_culprits = {}

print (">> Initiating picture scan...")
for d in descriptors:
    print ("--------- analyzing %s for matches ------------" % d)
    matches = flann.knnMatch(query_ds, np.load(join(folder, d)), k =2)
    good = []
    for m,n in matches:
        if m.distance < 0.7*n.distance:
            good.append(m)
    if len(good) > MIN_MATCH_COUNT:
        print ("%s is a match! (%d)" % (d, len(good)))
    else:
        print ("%s is not a match" % d)
    potential_culprits[d] = len(good)

max_matches = None
potential_suspect = None
for culprit, matches in potential_culprits.items():
    if max_matches == None or matches > max_matches:
        max_matches = matches
        potential_suspect = culprit

print ("potential suspect is %s" % potential_suspect.replace("npy", "").upper())

输出:

['bane.npy', 'dr-hurt.npy', 'hush.npy', 'penguin.npy', 'posion-ivy.npy', 'riddler.npy', 'two-face.npy']
>> Initiating picture scan...
--------- analyzing bane.npy for matches ------------
bane.npy is not a match
--------- analyzing dr-hurt.npy for matches ------------
dr-hurt.npy is a match! (298)
--------- analyzing hush.npy for matches ------------
hush.npy is a match! (301)
--------- analyzing penguin.npy for matches ------------
penguin.npy is not a match
--------- analyzing posion-ivy.npy for matches ------------
posion-ivy.npy is not a match
--------- analyzing riddler.npy for matches ------------
riddler.npy is not a match
--------- analyzing two-face.npy for matches ------------
two-face.npy is not a match
potential suspect is HUSH.

你可能感兴趣的:(opencv)