现在的网络上,铁轨检测的源码几乎没有,所以自己参照着一篇汽车车道线检测的方法,然后调节参数,实现了铁轨的轨道检测,但现在只能检测直线,弯曲的铁轨检测下一步会实现,实现之后会更新的,敬请期待。
弯轨检测的已经实现并且检测效果不弱于直线:火车轨道铁路轨道检测识别(弯轨+直轨)通用性(Python源码+讲解)
针对现有的火车轨道检测,从汽车车道线延伸过来,用的是同样的方法可以实现火车轨道检测。
需求环境
Ubuntu16.04
python3.5
opencv3.2
原图:
效果图:
首先,是对图片的读取操作,采用的是imread函数
img = mplimg.imread("lane.jpg")
print("start to process the image....")
①灰度转换
首先是对图片进行灰度转换 cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
这里的灰度图因为有颜色让我探索了好久,后来发现imwrite之后的是没有颜色的,猜想原因应该是plt.imshow()的原因
②高斯变换
进行高斯变换,曲率选择29 cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 0, 0)
③边缘检测(Canny算子检测)
利用canny算子检测,设置好双阈值 [40,130],cv2.Canny(blur_gray, canny_lthreshold, canny_hthreshold)
④选取RIO区域
针对火车的特殊性,轨道总是出现在固定的位置,选取一个梯形的RIO区域
RIO区域如下所示:网格区域,选取出来四个角点
def roi_mask(img, vertices):#img是输入的图像,verticess是兴趣区的四个点的坐标(三维的数组)
mask = np.zeros_like(img)#生成与输入图像相同大小的图像,并使用0填充,图像为黑色
#defining a 3 channel or 1 channel color to fill the mask with depending on the input image
if len(img.shape) > 2:
channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
mask_color = (255,) * channel_count#如果 channel_count=3,则为(255,255,255)
else:
mask_color = 255
cv2.fillPoly(mask, vertices, mask_color)#使用白色填充多边形,形成蒙板
masked_img = cv2.bitwise_and(img, mask)#img&mask,经过此操作后,兴趣区域以外的部分被蒙住了,只留下兴趣区域的图像
return masked_img
⑥识别两条铁轨,霍夫直线检测
针对两条铁轨不同的斜率划分出来左右,霍夫直线检测,然后将划分出来的点,进行线性拟合,绘制出两个铁轨
两条铁路的的斜率和拍摄的视角有关系,如果摄像机安装在机车的中心区域,那么两条铁轨的斜率是一正一负两个级别,可以用0来进行划分,但是因为我图片中的拍摄位置问题,两条铁路都是负斜率,所以需要界定一个中间值,大概是 -0.6左右,将两条铁轨可以完美的区别开。
def draw_lanes(img, lines, color=[255, 0, 0], thickness=8):
left_lines, right_lines = [], []#用于存储左边和右边的直线
for line in lines:#对直线进行分类
for x1, y1, x2, y2 in line:
#cv2.line(img, (x1, y1),(x2,y2), color, thickness) # 画出直线
k = (y2 - y1) / (x2 - x1)
if k < -7:
left_lines.append(line)
else:
right_lines.append(line)
# for line in right_lines:
# for x1,y1,x2,y2 in line:
# cv2.line(img, (x1, y1), (x2, y2), color, thickness)
if (len(left_lines) <= 0 or len(right_lines) <= 0):
return img
# for line in left_lines: # 对直线进行分类
# for x1, y1, x2, y2 in line:
# cv2.line(img, (x1, y1), (x2, y2), color, thickness) # 画出直线
#clean_lines(left_lines, 0.1)#弹出左侧不满足斜率要求的直线
clean_lines(right_lines, 0.1)#弹出右侧不满足斜率要求的直线
left_points = [(x1, y1) for line in left_lines for x1,y1,x2,y2 in line]#提取左侧直线族中的所有的第一个点
left_points = left_points + [(x2, y2) for line in left_lines for x1,y1,x2,y2 in line]#提取左侧直线族中的所有的第二个点
right_points = [(x1, y1) for line in right_lines for x1,y1,x2,y2 in line]#提取右侧直线族中的所有的第一个点
right_points = right_points + [(x2, y2) for line in right_lines for x1,y1,x2,y2 in line]#提取右侧侧直线族中的所有的第二个点
left_vtx = calc_lane_vertices(left_points, 700, img.shape[0])#拟合点集,生成直线表达式,并计算左侧直线在图像中的两个端点的坐标
right_vtx = calc_lane_vertices(right_points, 700, img.shape[0])#拟合点集,生成直线表达式,并计算右侧直线在图像中的两个端点的坐标
cv2.line(img, (left_vtx[0][0],left_vtx[0][1]), left_vtx[1], color, thickness=20)#画出直线
cv2.line(img, (right_vtx[0][0]-50,right_vtx[0][1]), right_vtx[1], color, thickness=20)#画出直线
#将不满足斜率要求的直线弹出
def clean_lines(lines, threshold):
slope=[]
for line in lines:
for x1,y1,x2,y2 in line:
k=(y2-y1)/(x2-x1)
slope.append(k)
#slope = [(y2 - y1) / (x2 - x1) for line in lines for x1, y1, x2, y2 in line]
while len(lines) > 0:
mean = np.mean(slope)#计算斜率的平均值,因为后面会将直线和斜率值弹出
diff = [abs(s - mean) for s in slope]#计算每条直线斜率与平均值的差值
idx = np.argmax(diff)#计算差值的最大值的下标
if diff[idx] > threshold:#将差值大于阈值的直线弹出
slope.pop(idx)#弹出斜率
lines.pop(idx)#弹出直线
else:
break
最后,将两个图像进行叠加,输出图像
完整代码:https://github.com/Zanderzt/Rail-detection
代码调不易,star两行泪,欢迎star,感谢~