前言:因为要依赖上一章SSD目标检测(1):图片+视频版物体定位(附源码)来训练预测自己的数据集,所以建立自己的数据集是一个复杂且避不开的步骤,以下给出了制作自己的数据集所要经过的简单步骤,而后也有更详细的说明奉上。
以下过程详细,如有不明请留言提醒,详细过程如下:
–-----------------------------------------------------------------------------—------------
本篇博客,我的数据集、代码存储在这里,有需要的同学自己下载。
–-----------------------------------------------------------------------------—------------
知己知彼,方百战不殆。想制作自己的数据集当然要先了解SSD使用的数据集VOC2007长啥样。VOC2007下载链接 ,密码是:m5io。(VOC2007完整下载有3个压缩包+1个PDF,上面链接里只包含其中一个压缩包VOCtrainval_06-Nov-2007)。打开压缩包就如下图:
VOC2007详细介绍在这里,提供给大家有兴趣作了解。而制作自己的数据集只需用到前三个文件夹,所以请事先建好这三个文件夹放入同一文件夹内,同时ImageSets
文件夹内包含Main
文件夹
–-----------------------------------------------------------------------------—------------
–-----------------------------------------------------------------------------—------------
第一步:下载图片,存入JPEGImages文件夹——你可以直接从各种渠道下载得到所需要的图片集,存入到JPEGImages文件夹下,命名格式统一为“00xxxx.jpg”,如下图:
–-----------------------------------------------------------------------------—--------**----
第二步:使用labelImg工具给图片打标签——这是最重要的一步。如果你的python已经pip install lxml
下载了lxml
,就可以直接在我网盘下载labelImg工具windows版使用,密码:gyf3。
通过以上网盘下载得到工具文件后,打开…/data/predefined_classes.txt文件,可以发现这里都是图片标签——把你将要用到的标签都事先存入在这里,注意标签不能有中文。每次使用都把.exe
、data
这两个文件拖到桌面上(如果直接在文件夹内运行.exe
会报错不能运行),打开labelImg.exe文件,运行界面如下:就可以开始给图片打标签了
labelImg工具简单的使用步骤就是:
–-----------------------------------------------------------------------------—--------**----
第三步:生成Main文件夹下的.txt文件——在主目录下运行以下代码既可生成test.txt、train.txt、val.txt、trainval.txt四个文件,请注意每一个path
地址是否正确(其实这四个txt文件在后续并没有什么用处)
# -*- coding:utf-8 -*-
# -*- author:zzZ_CMing CSDN address:https://blog.csdn.net/zzZ_CMing
# -*- 2018/07/18; 15:19
# -*- python3.5
import os
import random
trainval_percent = 0.7
train_percent = 0.8
xmlfilepath = 'Annotations/'
txtsavepath = 'ImageSets/Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num*trainval_percent)
tr = int(tv*train_percent)
trainval = random.sample(list,tv)
train = random.sample(trainval,tr)
ftrainval = open(txtsavepath+'/trainval.txt', 'w')
ftest = open(txtsavepath+'/test.txt', 'w')
ftrain = open(txtsavepath+'/train.txt', 'w')
fval = open(txtsavepath+'/val.txt', 'w')
for i in list:
name = total_xml[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
print('Well Done!!!')
运行完成,得到如下文件:可以打开看一看,内容就是各个图片的索引,意味着哪些图片用做训练,哪些用做测试。
说明:SSD框架所用到的标签文件并不直接是.xml格式文件,而是.tfrecord文件,因为这一部分比较重要,代码先贴上——只为想研究如何生成.tfrecord文件的同学准备,想要了解 SSD目标检测(3):使用自己的数据集做识别(详细说明附源码),请继续点击,详细过程讲解+源码即刻奉上
# -*- coding:utf-8 -*-
# -*- author:zzZ_CMing CSDN address:https://blog.csdn.net/zzZ_CMing
# -*- 2018/07/17; 13:18
# -*- python3.5
"""
特别注意: 17行VOC_LABELS标签要修改,189行的path地址要正确
"""
import os
import sys
import random
import numpy as np
import tensorflow as tf
import xml.etree.ElementTree as ET
# 我的标签定义只有手表这一类,所以下面的VOC_LABELS要根据自己的图片标签而定,第一组'none': (0, 'Background')是不能删除的;
VOC_LABELS = {
'none': (0, 'Background'),
'watch': (1, 'watch')
}
# 图片和标签存放的文件夹.
DIRECTORY_ANNOTATIONS = 'Annotations/'
DIRECTORY_IMAGES = 'JPEGImages/'
# 随机种子.
RANDOM_SEED = 4242
SAMPLES_PER_FILES = 3 # 每个.tfrecords文件包含几个.xml样本
def int64_feature(value):
"""
生成整数型,浮点型和字符串型的属性
"""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def float_feature(value):
if not isinstance(value, list):
value = [value]
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def bytes_feature(value):
if not isinstance(value, list):
value = [value]
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def _process_image(directory, name):
"""
图片处理
"""
# Read the image file.
filename = directory + DIRECTORY_IMAGES + name + '.jpg'
image_data = tf.gfile.FastGFile(filename, 'rb').read()
# Read the XML annotation file.
filename = os.path.join(directory, DIRECTORY_ANNOTATIONS, name + '.xml')
tree = ET.parse(filename)
root = tree.getroot()
# Image shape.
size = root.find('size')
shape = [int(size.find('height').text),
int(size.find('width').text),
int(size.find('depth').text)]
# Find annotations.
bboxes = []
labels = []
labels_text = []
difficult = []
truncated = []
for obj in root.findall('object'):
label = obj.find('name').text
labels.append(int(VOC_LABELS[label][0]))
labels_text.append(label.encode('ascii')) # 变为ascii格式
if obj.find('difficult'):
difficult.append(int(obj.find('difficult').text))
else:
difficult.append(0)
if obj.find('truncated'):
truncated.append(int(obj.find('truncated').text))
else:
truncated.append(0)
bbox = obj.find('bndbox')
a = float(bbox.find('ymin').text) / shape[0]
b = float(bbox.find('xmin').text) / shape[1]
a1 = float(bbox.find('ymax').text) / shape[0]
b1 = float(bbox.find('xmax').text) / shape[1]
a_e = a1 - a
b_e = b1 - b
if abs(a_e) < 1 and abs(b_e) < 1:
bboxes.append((a, b, a1, b1))
return image_data, shape, bboxes, labels, labels_text, difficult, truncated
def _convert_to_example(image_data, labels, labels_text, bboxes, shape,difficult, truncated):
"""
转化样例
"""
xmin = []
ymin = []
xmax = []
ymax = []
for b in bboxes:
assert len(b) == 4
# pylint: disable=expression-not-assigned
[l.append(point) for l, point in zip([ymin, xmin, ymax, xmax], b)]
# pylint: enable=expression-not-assigned
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/format': bytes_feature(image_format),
'image/encoded': bytes_feature(image_data)}))
return example
def _add_to_tfrecord(dataset_dir, name, tfrecord_writer):
"""
增加到tfrecord
"""
image_data, shape, bboxes, labels, labels_text, difficult, truncated = \
_process_image(dataset_dir, name)
example = _convert_to_example(image_data, labels, labels_text,
bboxes, shape, difficult, truncated)
tfrecord_writer.write(example.SerializeToString())
def _get_output_filename(output_dir, name, idx):
"""
name为转化文件的前缀
"""
return '%s/%s_%03d.tfrecord' % (output_dir, name, idx)
def run(dataset_dir, output_dir, name='voc_train', shuffling=False):
if not tf.gfile.Exists(dataset_dir):
tf.gfile.MakeDirs(dataset_dir)
path = os.path.join(dataset_dir, DIRECTORY_ANNOTATIONS)
filenames = sorted(os.listdir(path))
if shuffling:
random.seed(RANDOM_SEED)
random.shuffle(filenames)
i = 0
fidx = 0
while i < len(filenames):
# Open new TFRecord file.
tf_filename = _get_output_filename(output_dir, name, fidx)
with tf.python_io.TFRecordWriter(tf_filename) as tfrecord_writer:
j = 0
while i < len(filenames) and j < SAMPLES_PER_FILES:
sys.stdout.write(' Converting image %d/%d \n' % (i + 1, len(filenames))) # 终端打印,类似print
sys.stdout.flush() # 缓冲
filename = filenames[i]
img_name = filename[:-4]
_add_to_tfrecord(dataset_dir, img_name, tfrecord_writer)
i += 1
j += 1
fidx += 1
print('\nFinished converting the Pascal VOC dataset!')
def main(_):
# 原数据集路径,输出路径以及输出文件名,要根据自己实际做改动
dataset_dir = "../VOC2007_test/"
output_dir = "tfrecords_/"
if not os.path.exists(output_dir):
os.mkdir(output_dir)
run(dataset_dir, output_dir)
if __name__ == '__main__':
tf.app.run()
得到的.tfrecords文件如下:
到这里,用于SSD的自己的数据集就建立完成了,主要需要的就是.tfrecords
文件。下一章 SSD目标检测(3):使用自己的数据集做识别(详细说明附源码)介绍如何用自己的数据集开展训练预测