kafka 怎么保证的exactly once

Kafka auto.offset.reset值详解

发表于2017/7/6 11:25:22  1010人阅读

分类: Kafka

昨天在写一个java消费kafka数据的实例,明明设置auto.offset.reset为earliest,但还是不从头开始消费,官网给出的含义太抽象了。 
earliest: automatically reset the offset to the earliest offset,自动将偏移量置为最早的。难道不是topic中各分区的开始?结果还真不是,具体含义如下:

auto.offset.reset值含义解释

earliest 
当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费 
latest 
当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据 
none 
topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常

 

以下为测试详细:

1.同分组下测试

1.1测试一

1.1.1测试环境

Topic为lsztopic7,并生产30条信息。lsztopic7详情: 
这里写图片描述 
创建组为“testtopi7”的consumer,将enable.auto.commit设置为false,不提交offset。依次更改auto.offset.reset的值。此时查看offset情况为: 
这里写图片描述

1.1.2测试结果

earliest 
客户端读取30条信息,且各分区的offset从0开始消费。 
latest 
客户端读取0条信息。 
none 
抛出NoOffsetForPartitionException异常。 
这里写图片描述

1.1.3测试结论

新建一个同组名的消费者时,auto.offset.reset值含义: 
earliest 每个分区是从头开始消费的。 
none 没有为消费者组找到先前的offset值时,抛出异常

1.2测试二

1.2.1测试环境

测试场景一下latest时未接受到数据,保证该消费者在启动状态,使用生产者继续生产10条数据,总数据为40条。 
这里写图片描述

1.2.2测试结果

latest 
客户端取到了后生产的10条数据

1.2.3测试结论

当创建一个新分组的消费者时,auto.offset.reset值为latest时,表示消费新的数据(从consumer创建开始,后生产的数据),之前产生的数据不消费。

1.3测试三

1.3.1测试环境

在测试环境二,总数为40条,无消费情况下,消费一批数据。运行消费者消费程序后,取到5条数据。 
即,总数为40条,已消费5条,剩余35条。 
这里写图片描述

1.3.2测试结果

earliest 
消费35条数据,即将剩余的全部数据消费完。

latest 
消费9条数据,都是分区3的值。 
offset:0 partition:3 
offset:1 partition:3 
offset:2 partition:3 
offset:3 partition:3 
offset:4 partition:3 
offset:5 partition:3 
offset:6 partition:3 
offset:7 partition:3 
offset:8 partition:3

none 
抛出NoOffsetForPartitionException异常。 
这里写图片描述

1.3.3测试结论

earliest 当分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费。 
latest 当分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据。 
none 当该topic下所有分区中存在未提交的offset时,抛出异常。

1.4测试四

1.4.1测试环境

再测试三的基础上,将数据消费完,再生产10条数据,确保每个分区上都有已提交的offset。 
此时,总数为50,已消费40,剩余10条 
这里写图片描述

1.4.2测试结果

none 
消费10条信息,且各分区都是从offset开始消费 
offset:9 partition:3 
offset:10 partition:3 
offset:11 partition:3 
offset:15 partition:0 
offset:16 partition:0 
offset:17 partition:0 
offset:18 partition:0 
offset:19 partition:0 
offset:20 partition:0 
offset:5 partition:2

1.4.3测试结论

值为none时,topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常。

2.不同分组下测试

2.1测试五

2.1.1测试环境

在测试四环境的基础上:总数为50,已消费40,剩余10条,创建不同组的消费者,组名为testother7 
这里写图片描述

2.1.2 测试结果

earliest 
消费50条数据,即将全部数据消费完。

latest 
消费0条数据。

none 
抛出异常 
这里写图片描述

2.1.3测试结论

组与组间的消费者是没有关系的。 
topic中已有分组消费数据,新建其他分组ID的消费者时,之前分组提交的offset对新建的分组消费不起作用。

 

Kafka管理工具介绍

  • 1 Consumer Offset Checker
  • 2 Dump Log Segment
  • 3 导出Zookeeper中Group相关的偏移量
  • 4 通过JMX获取metrics信息
  • 5 Kafka数据迁移工具
  • 6 日志重放工具
  • 7 Simple Consume脚本
  • 8 更新Zookeeper中的偏移量

 

Consumer Offset Checker

  Consumer Offset Checker主要是运行kafka.tools.ConsumerOffsetChecker类,对应的脚本是kafka-consumer-offset-checker.sh,会显示出Consumer的Group、Topic、分区ID、分区对应已经消费的Offset、logSize大小,Lag以及Owner等信息。

如果运行kafka-consumer-offset-checker.sh脚本的时候什么信息都不输入,那么会显示以下信息:

[[email protected] /]$ bin /kafka-consumer-offset-checker .sh
Check the offset of your consumers.
Option                                  Description                           
------                                  -----------                           
--broker-info                           Print broker info                     
--group                                 Consumer group.                       
--help                                  Print this message.                   
--retry.backoff.ms             Retry back-off to use for failed      
                                           offset queries. (default: 3000)     
--socket.timeout.ms            Socket timeout to use when querying   
                                           for offsets. (default: 6000)        
--topic                                 Comma-separated list of consumer      
                                           topics (all topics if absent).      
--zookeeper                             ZooKeeper connect string. (default:   
                                           localhost:2181)

我们根据提示,输入的命令如下:

[[email protected] /]$ bin /kafka-consumer-offset-checker .sh --zookeeper www.iteblog.com:2181 --topic test --group spark --broker-info
Group           Topic      Pid Offset          logSize         Lag             Owner
spark    test       0   34666914        34674392        7478            none
spark    test       1   34670481        34678029        7548            none
spark    test       2   34670547        34678002        7455            none
spark    test       3   34664512        34671961        7449            none
spark    test       4   34680143        34687562        7419            none
spark    test       5   34672309        34679823        7514            none
spark    test       6   34674660        34682220        7560            none
BROKER INFO
2 -> www.iteblog.com:9092
5 -> www.iteblog.com:9093
4 -> www.iteblog.com:9094
7 -> www.iteblog.com:9095
1 -> www.iteblog.com:9096
3 -> www.iteblog.com:9097
6 -> www.iteblog.com:9098

 https://www.iteblog.com/archives/1605.html

 --------------------------------------------------------------------------------------------------------------------------------------

 

 

转载于:https://www.cnblogs.com/rocky-AGE-24/p/7444712.html

你可能感兴趣的:(kafka 怎么保证的exactly once)