【题目链接】
已知 a [ 0 ] [ 1 ] = 233 , a [ 0 ] [ 2 ] = 2333 , a [ 0 ] [ 2 ] = 23333 ⋯ ( a [ 0 ] [ i ] = a [ 0 ] [ i − 1 ] ∗ 10 + 3 ) a[0][1]=233,a[0][2]=2333,a[0][2]=23333\cdots(a[0][i]=a[0][i-1]*10+3) a[0][1]=233,a[0][2]=2333,a[0][2]=23333⋯(a[0][i]=a[0][i−1]∗10+3)。
又 a [ i ] [ j ] = a [ i − 1 ] [ j ] + a [ i ] [ j − 1 ] a[i][j]=a[i-1][j]+a[i][j-1] a[i][j]=a[i−1][j]+a[i][j−1],现给你n个数, a [ 0 ] [ 1 ] ∼ a [ 0 ] [ n ] a[0][1] \sim a[0][n] a[0][1]∼a[0][n],最后求 a [ n ] [ m ] % 10000007 a[n][m]\%10000007 a[n][m]%10000007
【数据范围】
n ≤ 10 , m ≤ 1000000000 , 0 ≤ a i , 0 ≤ 1000000000 n\leq 10,m\leq 1000000000,0\leq a_{i,0}\leq 1000000000 n≤10,m≤1000000000,0≤ai,0≤1000000000。
【分析】
[ a 0 , 0 a 0 , 1 ⋯ a 0 , m a 1 , 0 a 1 , 1 ⋯ a 1 , m ⋮ ⋮ ⋱ ⋮ a n , 0 a n , 1 ⋯ a n , m ] \begin{bmatrix} a_{0,0}&a_{0,1}&\cdots &a_{0,m} \\ a_{1,0}&a_{1,1}&\cdots &a_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,0}& a_{n,1}& \cdots & a_{n,m} \\ \end{bmatrix} ⎣⎢⎢⎢⎡a0,0a1,0⋮an,0a0,1a1,1⋮an,1⋯⋯⋱⋯a0,ma1,m⋮an,m⎦⎥⎥⎥⎤
对于上述 n × m n\times m n×m矩阵,我们已知第一行第一列,由于 a i , j = a i − 1 , j + a i , j − 1 a_{i,j}=a_{i-1,j}+a_{i,j-1} ai,j=ai−1,j+ai,j−1,即可递推到 a n , m = a 1 , m − 1 + a 2 , m − 1 + ⋯ a n , m − 1 + a 0 , m a_{n,m}=a_{1,m-1}+a_{2,m-1}+\cdots a_{n,m-1}+a_{0,m} an,m=a1,m−1+a2,m−1+⋯an,m−1+a0,m。
又 n ≤ 10 n\leq 10 n≤10,即可构造 12 × 12 12\times 12 12×12的矩阵(当n不为10时,由于计算结果时只计算前n行,所以并不影响结果):
[ 10 0 0 0 ⋯ 0 10 1 0 0 ⋯ 1 10 1 1 0 ⋯ 1 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 10 1 1 1 ⋯ 1 0 0 0 0 ⋯ 1 ] \begin{bmatrix} 10 & 0 & 0 & 0 & \cdots &0 \\ 10 & 1& 0 & 0 & \cdots &1 \\ 10 & 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 10& 1& 1 & 1 & \cdots & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} ⎣⎢⎢⎢⎢⎢⎢⎢⎡101010⋮100011⋮10001⋮10000⋮10⋯⋯⋯⋱⋯⋯011⋮11⎦⎥⎥⎥⎥⎥⎥⎥⎤
矩阵乘法如下:
[ a 0 , m a 1 , m a 2 , m ⋮ a n , m 3 ] = [ 10 0 0 0 ⋯ 0 10 1 0 0 ⋯ 1 10 1 1 0 ⋯ 1 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 10 1 1 1 ⋯ 1 0 0 0 0 ⋯ 1 ] × [ a 0 , m − 1 a 1 , m − 1 a 2 , m − 1 ⋮ a n , m − 1 3 ] \begin{bmatrix} a_{0,m}\\ a_{1,m}\\ a_{2,m}\\ \vdots \\ a_{n,m}\\ 3 \end{bmatrix}= \begin{bmatrix} 10 & 0 & 0 & 0 & \cdots &0 \\ 10 & 1& 0 & 0 & \cdots &1 \\ 10 & 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 10& 1& 1 & 1 & \cdots & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \times \begin{bmatrix} a_{0,m-1} \\ a_{1,m-1} \\ a_{2,m-1} \\ \vdots \\ a_{n, m-1}\\ 3 \end{bmatrix} ⎣⎢⎢⎢⎢⎢⎢⎢⎡a0,ma1,ma2,m⋮an,m3⎦⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎡101010⋮100011⋮10001⋮10000⋮10⋯⋯⋯⋱⋯⋯011⋮11⎦⎥⎥⎥⎥⎥⎥⎥⎤×⎣⎢⎢⎢⎢⎢⎢⎢⎡a0,m−1a1,m−1a2,m−1⋮an,m−13⎦⎥⎥⎥⎥⎥⎥⎥⎤
即为:
[ a 0 , m a 1 , m a 2 , m ⋮ a n , m 3 ] = [ 10 0 0 0 ⋯ 0 10 1 0 0 ⋯ 1 10 1 1 0 ⋯ 1 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 10 1 1 1 ⋯ 1 0 0 0 0 ⋯ 1 ] m × [ a 0 , 0 a 1 , 0 a 2 , 0 ⋮ a n , 0 3 ] \begin{bmatrix} a_{0,m}\\ a_{1,m}\\ a_{2,m}\\ \vdots \\ a_{n,m}\\ 3 \end{bmatrix}= \begin{bmatrix} 10 & 0 & 0 & 0 & \cdots &0 \\ 10 & 1& 0 & 0 & \cdots &1 \\ 10 & 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 10& 1& 1 & 1 & \cdots & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} ^m \times \begin{bmatrix} a_{0,0} \\ a_{1,0} \\ a_{2,0} \\ \vdots \\ a_{n, 0}\\ 3 \end{bmatrix} ⎣⎢⎢⎢⎢⎢⎢⎢⎡a0,ma1,ma2,m⋮an,m3⎦⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎡101010⋮100011⋮10001⋮10000⋮10⋯⋯⋯⋱⋯⋯011⋮11⎦⎥⎥⎥⎥⎥⎥⎥⎤m×⎣⎢⎢⎢⎢⎢⎢⎢⎡a0,0a1,0a2,0⋮an,03⎦⎥⎥⎥⎥⎥⎥⎥⎤
这里只需要做一遍矩阵快速幂求出构造矩阵的m次方,最后对第一列做一遍矩阵乘法即可求得答案。
【代码】
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long LL;
typedef vector<LL> vec;
typedef vector<vec> mat;
const LL MOD = 10000007LL;
void print(mat &A) {
for(int i = 0; i < A.size(); i++) {
for(int j = 0; j < A[i].size(); j++) printf("%d ", A[i][j]);
printf("\n");
}
}
void Init(mat &A) {//构造矩阵
for(int i = 0; i <= 10; i++) {
A[i][0] = 10;
for(int j = 1; j <= 10; j++) {
if(j <= i)A[i][j] = 1;
else A[i][j] = 0;
}
A[i][11] = 1;
}
for(int j = 0; j <= 11; j++) {
if(j != 11)A[11][j] = 0;
else A[11][11] = 1;
}
}
mat mul(mat &A, mat &B) {//矩阵乘法
mat C(A.size(), vec(B[0].size()));
for(int i = 0; i < A.size(); i++)
for(int k = 0; k < B.size(); k++)
for(int j = 0; j < B[0].size(); j++)
C[i][j] = (C[i][j] + A[i][k] * B[k][j] % MOD + MOD) % MOD;
return C;
}
mat pow(mat A, LL n) {//矩阵快速幂
mat B(A.size(), vec(A.size()));
for(int i = 0; i < B.size(); i++)B[i][i] = 1;
while(n > 0) {
if(n & 1)B = mul(B, A);
n >>= 1;
A = mul(A, A);
}
return B;
}
void solve(mat &A, int n, int m, mat &num) {
A = pow(A, m);//求得A的m次方存在A中
num = mul(A, num);//做矩阵乘法
printf("%lld\n", num[n][0]);//最后答案即为num[n][0]
}
int main() {
int n, m;
mat A(12, vec(12));//构造矩阵数组
mat num(12, vec(1));//第一列可看成12*1的矩阵
while(~scanf("%d%d", &n, &m)) {
Init(A);
for(int i = 0; i <= 11; i++)num[i][0] = 0LL;
for(int i = 1; i <= n; i++)scanf("%d", &num[i][0]);
num[11][0] = 3LL;
num[0][0] = 23LL;
solve(A, n, m, num);
}
return 0;
}