你们好我是啊晨
接着更新Flink技术。
废话不多说,内容很多选择阅读,详细。
请:
Table API 是流处理和批处理通用的关系型 API,Table API 可以基于流输入或者批输入来运行而不需要进行任何修改。Table API 是 SQL 语言的超集并专门为 Apache Flink 设计的,Table API 是 Scala 和 Java 语言集成式的 API。与常规 SQL 语言中将查询指定为字符串不同,Table API 查询是以 Java 或 Scala 中的语言嵌入样式来定义的,具有 IDE 支持如:自动完成和语法检测。
org.apache.flink
flink-table_2.11
1.7.2
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("ECOMMERCE")
val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)
val ecommerceLogDstream: DataStream[EcommerceLog] = dstream.map { jsonString => JSON.parseObject(jsonString, classOf[EcommerceLog]) }
val ecommerceLogTable: Table = tableEnv.fromDataStream(ecommerceLogDstream)
val table: Table = ecommerceLogTable.select("mid,ch").filter("ch ='appstore'")
val midchDataStream: DataStream[(String, String)] = table.toAppendStream[(String, String)]
midchDataStream.print()
env.execute()
}
package com.bigdata.day08
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.api.scala._
import org.apache.flink.table.api.TableEnvironment
import org.apache.flink.table.api.scala._
case class EcommerceLog(name:String,age:Int,height:Double)
object Demo2 {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val dataStream = env.socketTextStream("hadoop102",9999)
val tableEnv = TableEnvironment.getTableEnvironment(env)
val ecommerceLogDstream = dataStream.map{
line => val words = line.split("\t")
EcommerceLog(words(0).trim,words(1).trim.toInt,words(2).trim.toDouble)
}
val ecommerceLogTable =tableEnv.fromDataStream(ecommerceLogDstream)
val table = ecommerceLogTable.select("name")
val midchDataStream = table.toAppendStream[(String)]
midchDataStream.print("midchDataStream::: ")
env.execute("demo2")
}
}
如果流中的数据类型是 case class 可以直接根据 case class 的结构生成 table
tableEnv.fromDataStream(ecommerceLogDstream)
或者根据字段顺序单独命名
tableEnv.fromDataStream(ecommerceLogDstream,’mid,’uid …)
最后的动态表可以转换为流进行输出
table.toAppendStream[(String,String)]
用一个单引放到字段前面来标识字段名, 如 ‘name , ‘mid ,’amount 等
//每 10 秒中渠道为 appstore 的个数
def main(args: Array[String]): Unit = {
//sparkcontext
val env: StreamExecutionEnvironment =
StreamExecutionEnvironment.getExecutionEnvironment
//时间特性改为 eventTime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val myKafkaConsumer: FlinkKafkaConsumer011[String] =
MyKafkaUtil.getConsumer("ECOMMERCE")
val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
val ecommerceLogDstream: DataStream[EcommerceLog] = dstream.map{ jsonString
=>JSON.parseObject(jsonString,classOf[EcommerceLog]) }
//告知 watermark 和 eventTime 如何提取
val ecommerceLogWithEventTimeDStream: DataStream[EcommerceLog] =
ecommerceLogDstream.assignTimestampsAndWatermarks(new
BoundedOutOfOrdernessTimestampExtractor[EcommerceLog](Time.seconds(0L)) {
override def extractTimestamp(element: EcommerceLog): Long = {
element.ts
}
}).setParallelism(1)
val tableEnv: StreamTableEnvironment =
TableEnvironment.getTableEnvironment(env)
//把数据流转化成 Table
val ecommerceTable: Table =
tableEnv.fromDataStream(ecommerceLogWithEventTimeDStream ,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinut
e,'ts.rowtime)
//通过 table api 进行操作
// 每 10 秒 统计一次各个渠道的个数 table api 解决
//1 groupby 2 要用 window 3 用 eventtime 来确定开窗时间
val resultTable: Table = ecommerceTable.window(Tumble over 10000.millis on
'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
//把 Table 转化成数据流
val resultDstream: DataStream[(Boolean, (String, Long))] =
resultSQLTable.toRetractStream[(String,Long)]
resultDstream.filter(_._1).print()
env.execute()
}
如果了使用 groupby,table 转换为流的时候只能用 toRetractDstream
val rDstream: DataStream[(Boolean, (String, Long))] = table
.toRetractStream[(String,Long)]
toRetractDstream 得到的第一个 boolean 型字段标识 true 就是最新的数据
(Insert),false 表示过期老数据(Delete)
val rDstream: DataStream[(Boolean, (String, Long))] = table
.toRetractStream[(String,Long)]
rDstream.filter(_._1).print()
如果使用的 api 包括时间窗口,那么窗口的字段必须出现在 groupBy 中。
val table: Table = ecommerceLogTable
.filter(“ch =‘appstore’”)
.window(Tumble over 10000.millis on 'ts as 'tt)
.groupBy('ch ,'tt)
.select("ch,ch.count ")
val ecommerceLogTable: Table = tableEnv
.fromDataStream( ecommerceLogWithEtDstream,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'lo
gHourMinute,'ps.proctime)
val ecommerceLogTable: Table = tableEnv
.fromDataStream(ecommerceLogWithEtDstream,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'lo
gHourMinute,'ts.rowtime)
val table: Table = ecommerceLogTable.filter("ch ='appstore'")
.window(Tumble over 10000.millis on 'ts as 'tt)
.groupBy('ch ,'tt)
.select("ch,ch.count ")
def main(args: Array[String]): Unit = {
//sparkcontext
val env: StreamExecutionEnvironment =
StreamExecutionEnvironment.getExecutionEnvironment
//时间特性改为 eventTime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val myKafkaConsumer: FlinkKafkaConsumer011[String] =
MyKafkaUtil.getConsumer("ECOMMERCE")
val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
val ecommerceLogDstream: DataStream[EcommerceLog] = dstream.map{ jsonString
=>JSON.parseObject(jsonString,classOf[EcommerceLog]) }
//告知 watermark 和 eventTime 如何提取
val ecommerceLogWithEventTimeDStream: DataStream[EcommerceLog] =
ecommerceLogDstream.assignTimestampsAndWatermarks(new
BoundedOutOfOrdernessTimestampExtractor[EcommerceLog](Time.seconds(0L)) {
override def extractTimestamp(element: EcommerceLog): Long = {
element.ts
}
}).setParallelism(1)
//SparkSession
val tableEnv: StreamTableEnvironment =
TableEnvironment.getTableEnvironment(env)
//把数据流转化成 Table
val ecommerceTable: Table =
tableEnv.fromDataStream(ecommerceLogWithEventTimeDStream ,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinu
te,'ts.rowtime)
//通过 table api 进行操作
// 每 10 秒 统计一次各个渠道的个数 table api 解决
//1 groupby 2 要用 window 3 用 eventtime 来确定开窗时间
val resultTable: Table = ecommerceTable.window(Tumble over 10000.millis on
'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
// 通过 sql 进行操作
val resultSQLTable : Table = tableEnv.sqlQuery( "select ch ,count(ch) from
"+ecommerceTable+" group by ch ,Tumble(ts,interval '10' SECOND )")
//把 Table 转化成数据流
//val appstoreDStream: DataStream[(String, String, Long)] =
appstoreTable.toAppendStream[(String,String,Long)]
val resultDstream: DataStream[(Boolean, (String, Long))] =
resultSQLTable.toRetractStream[(String,Long)]
resultDstream.filter(_._1).print()
env.execute()
}
未完结,一定敲敲敲着去理解,下篇继续更新大数据其他内容,谢谢观看