假设检验笔记

假设检验,就是做了一个假设 H,然后通过实验得到相关的统计数据判断 H 是否(大概率)成立,或者有多大把握认为 H 成立。这个 H 一般是一个与分布、统计量相关的的命题,如 H : P { 硬 币 朝 上 } < 0.2 H: P\{硬币朝上\} < 0.2 H:P{}<0.2

Intuition

直觉上,假定 H 正确,会使某个事件 A 变成小概率事件,即 P ( A ∣ H ) P(A|H) P(AH) 很小,那么在 H 的条件下,A 几乎不可能发生,如 H : P { 硬 币 朝 上 } < 0.2 H: P\{硬币朝上\} < 0.2 H:P{}<0.2 A : 连抛100次,80次朝上 A:\text{连抛100次,80次朝上} A:连抛100次,80次朝上。但若果在检验实验中 A 居然发生了,那 H 大概率是错的,于是拒绝 H。

Example

假设检验笔记_第1张图片
要检验此女士是否真能分辨「茶+奶」和「奶+茶」,可以进行伯努利实验:n 杯奶茶混合液给她逐杯试,如果她能至少分对 k 次,那就认为她真的能分辨。
为此可以作出假设 H 0 : 她 其 实 不 能 分 辨 , 只 是 瞎 猜 H_0:她其实不能分辨,只是瞎猜 H0:。将 H 0 H_0 H0 的对立假设记为 H 1 H_1 H1
选择这样假设是因为,这等价于对她的判断的分布作出假设:如果是瞎猜,那么她猜「茶+奶」和「奶+茶」的概率都应该是 0.5,对于每一杯她猜对的概率亦是 0.5,于是对于她猜对的总杯数 X,可以写出分布 X ∼ B ( n , 0.5 ) X\sim B(n,0.5) XB(n,0.5)
可以算出,要猜对多个的概率是很小的。即要观察的事件是 A : 分 对 至 少 k 杯 A:分对至少k杯 A:k,当 k 比较大时, P ( A ∣ H 0 ) P(A|H_0) P(AH0) 很小, A ∣ H 0 A|H_0 AH0 几乎不可能发生。
接下来就是进行实验,如果 A 发生了,就拒绝 H 0 H_0 H0、接受 H 1 H_1 H1,否则相反。

α \alpha α, P-value

这样检验有主观的成分:k 取多大,才能大概率地相信她是真的能分辨(才能在 A 发生时拒绝 H 0 H_0 H0)?这可以换一种说法: P ( A ∣ H 0 ) P(A|H_0) P(AH0) 要多小(在 H 0 H_0 H0 条件下 A 要多难发生),才能在 A 真的发生时有足够的信心相信 H 0 H_0 H0 是错的?
此例中 P-value 就是 P ( A ∣ H 0 ) P(A|H_0) P(AH0)(P-value 应该是 A 和比 A 更难发生的事件概率和)。指定 k 的大小,等价于指定一个概率阈值 α \alpha α,只有当 P-value = P ( A ∣ H 0 ) ≤ α \text{P-value}=P(A|H_0)\leq\alpha P-value=P(AH0)α 时,才认为: A 发 生 ⇔ H 0 明 显 / 大 概 率 是 错 的 A 发生\Leftrightarrow H_0明显/大概率是错的 AH0/,于是在 A 发生时拒绝 H 0 H_0 H0
所有使得拒绝 H 0 H_0 H0 的 P-value 的集合叫拒绝域,此例中就是 [ 0 , α ] [0,\alpha] [0,α],即当实验测得 P-value 落在拒绝域时,就拒绝 H 0 H_0 H0 α \alpha α 常取 0.05、0.01 等小值。

Error: Type I, Type II

上帝知道 H 0 H_0 H0 实际上是真的还是假的,但人不知道,所以依据实验结果,决定要拒绝或接受 H 0 H_0 H0 时,此时做出的决策(拒绝/接受)可能是错的,错误分两类:

  • 第 I 类,弃真错误,即 H 0 H_0 H0 其实是真的(上帝视觉),但被拒绝了;
  • 第 II 类,取伪错误,即 H 0 H_0 H0 其实是错的,但被接受了。

犯第 I 类错误的概率,就是 A 发生时拒绝 H 0 H_0 H0 的概率,即 α \alpha α,又叫显著性水平 1 − α 1-\alpha 1α 称为置信度

References

  1. 统计学基础–假设检验
  2. 假设检验(Hypothesis Testing)
  3. 假设检验——这一篇文章就够了
  4. 【r<-Rmarkdown】常用数学符号的 LaTeX 表示方法

你可能感兴趣的:(数学)