白板推导机器学习--绪论

1.绪论——学习资料介绍

频率派 —— 统计机器学习
贝叶斯派 —— 概率图模型

参考书推荐:
1.李航 《统计学习方法》
感K朴决逻,支提E隐条 ————> 统计机器学习

2.周志华 《机器学习》西瓜书

3.PRML《模式识别与机器学习》
主要是以贝叶斯的角度:
回分神核稀,图混近采连 顺 组

4.MLAPP 《以概率的视角去看机器学习》
百科全书似的,主要以贝叶斯角度

5.ESL《统计学习的基本元素》
主要以频率派的角度阐述,倾向性比较明显

6.Deep Learning 《深度学习》圣经 张志华翻译

视频资料:

1.台湾大学:林轩田
1)机器学习基石:VC Theory、正则化、线性模型等。(非常精彩)
2)机器学习技法:SVM、决策树、随机森林、神经网络、DeepLearning等算法模型。

2.张志华:
1)机器学习导论:主要是以频率派的角度阐述
2)统计机器学习:主要讲统计上的一些理论,以贝叶斯的角度阐述,偏数学方面。

3.Ng:CS229 斯坦福大学2017

4.徐亦达:
阐述一些列概率模型,EM、MCMC、Calman Filter,粒子滤波,狄利克雷过程。深度很深不多。
GitHub ——> notes 很全!

5.台湾大学:李宏毅
1)机器学习(2017)CNN、DNN
2)MLDS(2018)优化、正则化、实践优化、自然语言处理等

你可能感兴趣的:(机器学习,深度学习)