Description
Given an undirected graph, return true if and only if it is bipartite.
Recall that a graph is bipartite if we can split it’s set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists. Each node is an integer between 0 and graph.length - 1. There are no self edges or parallel edges: graph[i] does not contain i, and it doesn’t contain any element twice.
Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
Note:
问题描述
给定无向图, 如果它为双向图, 返回true
如果能将图中的点划分为两个独立的集合A和B, 使得图中的每个边的两个顶点一个在A, 另一个在B, 那么此图为双向图
图以如下形式给出:graph[i]为j的集合, 代表i与集合中的j为一条边的两个顶点。每个顶点为0到graph.length - 1之间的整数。不存在一条边由两个相同的顶点构成, 也不存在平行的边, graph[i]不包含i, 并且不会包含重复顶点。
问题分析
解题关键为通过colors数组来为graph中的顶点标记”颜色”(也就是分组), 颜色color作为递归方法的参数通过!color来改变
解法
class Solution {
public boolean isBipartite(int[][] graph) {
int V = graph.length;
if(V <= 2) return true;
//用来分组, 注意使用的是对象数组, 因为原始类型有默认值为false
Boolean[] colors = new Boolean[V];
for(int i = 0; i < V; i++){
//注意这里通过null来判断有没有分组
if(colors[i] == null && !color(graph, colors, true, i)){
return false;
}
}
return true;
}
boolean color(int[][] graph, Boolean[] colors, Boolean color, int node){
//若已经被分组, 看看是否被分配到了正确的组(也可以说, 是否前后出现矛盾)
if(colors[node] != null) return colors[node] == color;
//分组
colors[node] = color;
//与当前节点的数组对立, 因为我们之后递归的为该节点边上的对应顶点
color = !color;
//递归相邻顶点
for(int neighbor : graph[node]){
if(!color (graph, colors, color, neighbor)){
return false;
}
}
return true;
}
}