所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。
思路分析:
if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
// 718、最长重复子数组
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
复杂度分析:
思路分析:
if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
// 1143、最长公共子序列
class Solution2 {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= text1.size(); i++) {
for (int j = 1; j <= text2.size(); j++) {
if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
if(dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
复杂度分析:
思路分析:本题要求绘制的最大连线数,实际上就是求两个字符串的最长公共子序列的长度,即1143、最长公共子序列这道题。我们将字符串改成数组,代码完全一样,直接copy过来。
程序如下:
// 1035、不相交的线
class Solution3 {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
复杂度分析:
思路分析:本题的思路和1143、最长公共子序列的分析思路差不多,主要区别在于本题判断的是“ 最长公共子序列是不是另一个字符串的子串”。那么我们找到二者的最长公共子串,判断其长度是否等于s的长度即可。
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1]; // 与1143不同的地方
return result == s.size() ? true : false; // 与1143不同的地方
程序如下:
// 392、判断子序列-动态规划
class Solution4 {
public:
bool isSubsequence(string s, string t) {
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
int result = 0;
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1]; // 与1143不同的地方
if (dp[i][j] > result) result = dp[i][j];
}
}
return result == s.size() ? true : false; // 与1143不同的地方
}
};
复杂度分析:
思路分析:本题的思路和1143、最长公共子序列的分析思路差不多。本题统计字符串t在字符串s中出现的次数,我们可以理解为删除掉字符串s中的部分字符使得字符串s和字符串t相同的方法数量。
第一步,动态数组的含义。 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以下标 j − 1 j - 1 j−1为结尾的t在以下标 i − 1 i - 1 i−1为结尾的s中出现的次数为 d p [ i ] [ j ] dp[i][j] dp[i][j],即 t [ 0 , j − 1 ] t[0, j-1] t[0,j−1]在 s [ 0 , i − 1 ] s[0, i-1] s[0,i−1]中出现的次数。
第二步,递推公式。 d p [ i ] [ j ] dp[i][j] dp[i][j]可以由两种情况推导出来:
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
else dp[i][j] = dp[i - 1][j];
例子:s=“bageg”,t=“bag”。那么用s[4]="g"组成bag的方法数量,相当于在s[0, 3]="bage"中寻找中t[0, 1]="ba"的个数,只有s[0]s[1]s[4]这一种。而不用s[4]="g"组成bag的方法数量,相当于在s[0,3] ="bage"中,寻找t[0,2]="bag"的个数,即dp[4, 3],只有s[0]s[1]s[2]这一种。(说明:dp[4,2]=1代表在s[0,3] ="bage"中,t[0,1]="ba"的个数为1。)
// 115、不同的子序列-动态规划
class Solution5 {
public:
int numDistinct(string s, string t) {
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1, 0));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1; // 第一列初始化为1, dp[0][0]为1
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 第一行初始化为0, 可以省略
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
else dp[i][j] = dp[i - 1][j];
}
}
return dp[s.size()][t.size()];
}
};
复杂度分析:
# include
# include
# include
using namespace std;
// 718、最长重复子数组
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
// 1143、最长公共子序列
class Solution2 {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= text1.size(); i++) {
for (int j = 1; j <= text2.size(); j++) {
if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
// 1035、不相交的线-动态规划
class Solution3 {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};
// 392、判断子序列-动态规划
class Solution4 {
public:
bool isSubsequence(string s, string t) {
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
int result = 0;
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1]; // 与1143不同的地方
if (dp[i][j] > result) result = dp[i][j];
}
}
return result == s.size() ? true : false; // 与1143不同的地方
}
};
// 115、不同的子序列-动态规划
class Solution5 {
public:
int numDistinct(string s, string t) {
vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1, 0));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1; // 第一列初始化为1, dp[0][0]为1
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 第一行初始化为0, 可以省略
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
else dp[i][j] = dp[i - 1][j];
}
}
return dp[s.size()][t.size()];
}
};
int main() {
//vector nums1 = { 1, 2, 3, 2, 1 }, nums2 = { 3, 2, 1, 4, 7 }; // 测试案例
//Solution s1;
//int result = s1.findLength(nums1, nums2);
//string text1 = "abcde", text2 = "ace"; // 测试案例
//Solution2 s1;
//int result = s1.longestCommonSubsequence(text1, text2);
//vector nums1 = { 1, 4, 2 }, nums2 = { 1, 2, 4 }; // 测试案例
//Solution3 s1;
//int result = s1.maxUncrossedLines(nums1, nums2);
//string s = "abc", t = "ahbgdc"; // 测试案例
//Solution4 s1;
//int result = s1.isSubsequence(s, t);
string s = "babgbag", t = "bag"; // 测试案例
Solution5 s1;
int result = s1.numDistinct(s, t);
cout << result << endl;
system("pause");
return 0;
}
end