- 解决 Ollama 无法通过本地 IP 访问 11434 端口的问题
CarlowZJ
tcp/ip网络协议网络
根据你的描述,你在尝试将Ollama的localhost地址替换为本地IP地址(如192.168.*.*)时,遇到了网络错误,提示无法连接到服务。但在浏览器中访问http://:11434时,Ollama显示正在运行。以下是可能的原因和解决方案:一、问题分析Ollama默认绑定到127.0.0.1默认情况下,Ollama服务绑定到127.0.0.1(即localhost),这意味着它只能接受来自本
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 递归实例:登台阶问题:假如有n个台阶,一次只能上1个台阶或2个台阶,请问走到第n个台阶有几种走法?@C语言
热心市民小汪
C语言代码练习c语言算法开发语言
假如有n个台阶,一次只能上1个台阶或2个台阶,请问走到第n个台阶有几种走法?为便于读者理解题意,这里举例说明如下:假如有3个台阶,那么总计就有3种走法:第一种为每次上1个台阶,上3次;第二种为先上2个台阶,再上1个台阶;第三种为先上1个台阶,再上2个台阶。输入为n,输出为走到第n个台阶有几种走法Input3Output如果输入是3,走到第3个台阶的走法总计有3种,1,1,1和1,2和2,1,输出为
- Linux脚本实践1
一点多余.
linux运维服务器脚本
前言日常在Liunx中用到多个版本的java修改很麻烦,一个脚本搞定。1.准备两个jdk(如下图所示)2.准备脚本文件viswitch_jdk.sh#!/bin/bash#提示用户输入JDK路径read-p"请输入JDK的绝对路径(例如/usr/local/jdk/jdk-11.0.21):"jdk_path#检查输入的路径是否存在if[!-d"$jdk_path"];thenecho"错误:路径
- 线上一个隐匿 Bug 的复盘
Wu_Candy
大数据测试大数据
前言之前负责的一个项目上线好久了,最近突然爆出一Bug,最后评估影响范围将Bug升级成了故障,只因为影响的数据量有10000条左右,对业务方造成了一定的影响。但因为不涉及到资金损失,Bug修复后对数据进行修补,所以最终级别也是较低的。今天和大家分享这个线上隐匿的Bug,也好在工作的项目中得以借鉴哈~需求背景主题:民宿入住回访问卷描述:针对入住民宿的顾客,在离店后的当天或第二天内需要给顾客发送本次入
- 六十天前端强化训练之第二十九天之深入解析:从零构建企业级Vue项目的完整指南
编程星辰海
#前端前端Vue项目
=====欢迎来到编程星辰海的博客讲解======看完可以给一个免费的三连吗,谢谢大佬!目录一、Vite核心原理与开发优势二、项目创建深度解析三、配置体系深度剖析四、企业级项目架构设计五、性能优化实战六、开发提效技巧七、质量保障体系八、扩展阅读推荐一、Vite核心原理与开发优势1.1为什么选择Vite?Vite采用现代浏览器原生ES模块系统(NativeESM)作为开发服务器,颠覆了传统打包工具的
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- 【论文阅读】实时全能分割模型
万里守约
论文阅读论文阅读图像分割图像处理计算机视觉
文章目录导言1、论文简介2、论文主要方法3、论文针对的问题4、论文创新点总结导言在最近的计算机视觉领域,针对实时多任务分割的需求日益增长,特别是在交互式分割、全景分割和视频实例分割等多种应用场景中。为了解决这些挑战,本文介绍了一种新方法——RMP-SAM(Real-TimeMulti-PurposeSegmentAnything),旨在实现实时的多功能分割。RMP-SAM结合了动态卷积与高效的模型
- 求第k趟冒泡排序的结果
C嘎嘎嵌入式开发
算法算法数据结构排序算法
冒泡排序基本思想:重复地走访要排序的元素列,依次比较相邻的两个元素,如果顺序错误就交换它们,直到没有元素需要交换。时间复杂度:最坏和平均情况都是O(n²)。空间复杂度:O(1),属于原地排序。稳定性:稳定。求第k趟冒泡排序的结果voidsolve(){intn,k;cin>>n>>k;vectorv(n);for(inti=0;i>v[i];}if(k>n-1){//n个元素最多需要n-1趟排序s
- 论文阅读:2023 arxiv Multiscale Positive-Unlabeled Detection of AI-Generated Texts
CSPhD-winston-杨帆
论文阅读论文阅读人工智能
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328MultiscalePositive-UnlabeledDetectionofAI-GeneratedTextshttps://arxiv.org/abs/2305.18149https://www.doubao.com/chat/211427064915225
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- 技术大佬和普通程序员改bug的区别!
程序员干货站
大数据编程语言java人工智能数据分析
阅读本文大概需要2min文/强哥;未经授权禁止转载在我这么多年的工作生涯里,难免遇到那些工作糊弄的开发同事,随意编程的实习生,不够细致的测试,缺乏专业度的产品...产品的体验,取决于多个环节的把控,但很多情况下,由于bug严重影响体验,或者直接造成产品事故的,那么开发想甩锅都甩不掉!今天就给大家从几方面讲讲,经验丰富的程序员,是怎么debug的!1、并不是所有bug都需要修复修bug有个前提,那就
- 动态规划-01背包
ん贤
算法动态规划算法
兜兜转转了半天,发现还是Carl写的好。看过动态规划-基础的读者,大概都清楚。动态规划是将大问题,分解成子问题。并将子问题的解储存下来,避免重复计算。而背包问题,就是动态规划延申出来的一个大类。而01背包,就隶属于背包问题。那什么又是01背包呢?01背包有n件物品,与一次最多能背w重量的背包。第i件物品,重量为weight[i],得到的价值为value[i]。每件物品只能用一次,求解,将那些物品装
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- 基于Windows11的Xinference安装方法简介
hsg77
人工智能人工智能
基于Windows11的Xinference安装方法简介快速启动命令:condaactivateD:\cwgis_AI\xinferencexinference-local--host192.168.1.82--port9997condaactivateD:\cwgis_AI\xinferencexinference-local--host192.168.1.82--port9997http://
- 深度学习 | pytorch + torchvision + python 版本对应及环境安装
zfgfdgbhs
深度学习pythonpytorch
目录一、版本对应二、安装命令(pip)1.版本(1)v2.5.1~v2.0.0(2)v1.13.1~v1.11.0(3)v1.10.1~v1.7.02.安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自pytorch的github官方文档:pytorch/vision:Datasets,TransformsandModelsspecifictoComputerVisionpytor
- Java24的新特性
hello_ejb3
redis数据库java
Java语言特性系列Java5的新特性Java6的新特性Java7的新特性Java8的新特性Java9的新特性Java10的新特性Java11的新特性Java12的新特性Java13的新特性Java14的新特性Java15的新特性Java16的新特性Java17的新特性Java18的新特性Java19的新特性Java20的新特性Java21的新特性Java22的新特性Java23的新特性Java2
- 【最新】TensorFlow、cuDNN、CUDA三者之间的最新版本对应及下载地址
江上_酒
开发环境及工具配置TensorFlowCUDAcuDNN
TensorFlow、cuDNN、CUDA对应关系官网查询地址CUDA下载地址cuDNN下载地址VersionPythonversionCompilerBuildtoolscuDNNCUDAtensorflow_gpu-2.9.03.7-3.10MSVC2019Bazel5.0.08.111.2tensorflow_gpu-2.8.03.7-3.10MSVC2019Bazel4.2.18.111.
- UV - Python 包管理
丽英y
Pythonuvpython开发语言
文章目录创建uv项目已有项目已有uv项目创建uv项目#创建项目uvinitm3#创建环境cdm3uvvenv--python3.11#激活环境source.venv/bin/activate#添加库uvaddflask如果创建项目后,给库取别的名字,add的时候,会自动创建.venv文件夹>uvvenv--python3.12e312[0]UsingCPython3.12.8interpreter
- 机器学习中的 K-均值聚类算法及其优缺点
平凡而伟大.
机器学习机器学习算法均值算法
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成K个簇。其基本原理是将所有样本点划分到K个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。算法流程如下:随机选择K个样本点作为初始的聚类中心。将每个样本点分配到与其最近的聚类中心所在的簇。更新每个簇的聚类中心为该簇所有样本点的平均值。重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。优点:简单且易于实现。
- 计算机基础:源码、反码、补码 、位运算。盘点源码常见的位运算操作,祝您源码阅读更上一层楼。
pumpkin的玄学
my二进制javakotlin计算机基础二进制
源码、反码、补码计算机中对数字的编码表示有三种方式:「原码」,「反码」,「补码」:「原码」:原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1。比如十进制10如果用8个二进制位来表示就是00001010,-10就是10001010。「反码」:反码表示方法:正数的反码是其本身;负数的反码是在其原码的基础上,符号位不变,其余各个位取反。「补码」:补码表示方法:正数的补
- 吐槽一下VIVO手机限制adb连接
zhentongf
智能手机adb
我按照下面的教程试了,但依然不可以连接vivo手机的adb。我看下面的教程是2020年的,我猜vivo已经修复了普通用户可以通过选择MIDI设备之后连接adb的bug了。我想vivo就是不想让普通用户连上adb。另外我还测试了无线调试。连接WiFi后,依然连接不上。作为对比,小米手机就轻松连上了。192.168.0.110即为小米手机,端口5555解决VIVO手机开启USB调试仍不能连接ADB_v
- 《AI大模型趣味实战 》第8集:多端适配 个人新闻头条 基于大模型和RSS聚合打造个人新闻电台(Flask WEB版) 2
带娃的IT创业者
AI大模型趣味实战人工智能flask前端
《AI大模型趣味实战》第8集:多端适配个人新闻头条基于大模型和RSS聚合打造个人新闻电台(FlaskWEB版)2摘要本文末尾介绍了如何实现新闻智能体的方法。在信息爆炸的时代,如何高效获取和筛选感兴趣的新闻内容成为一个现实问题。本文将带领读者通过Python和Flask框架,结合大模型的强大能力,构建一个个性化的新闻聚合平台,不仅能够自动收集整理各类RSS源的新闻,还能以语音播报的形式提供"新闻电台
- 520微信代码轰炸
wengkebiao
python
写一个脚本,在520那天发给你的小可爱。#-*-coding:utf-8-*-#@Time:2022/5/1913:36#@Author:wkbimporttime,osimportpyautogui,pypercliptime.sleep(5)foriinrange(10):#pyautogui.click(662,748)pyperclip.copy("代码轰炸:hahaha,第{0}次".f
- RK3588开发笔记-DDR4降频实战与系统稳定性优化
flypig哗啦啦
RK3588DDR
目录前言一、DDR变频原理与工具准备1.1DDR变频机制1.2工具链配置二、DDR降频操作步骤2.1找到RK3588DDR默认bin文件2.2修改DDRbin文件频率三、进阶优化与调试3.1温控策略调整3.2电源设计优化四、常见问题与解决方案总结前言RK3588作为瑞芯微旗舰级SoC,其DDR4/LPDDR4X内存接口最高支持2112MHz频率,但在实际开发中,高频可能导致系统不稳定或功耗过高。例
- MATH2110 - STATISTICS 3
W_X_99515681
开发语言
TheUniversityofNottinghamSCHOOLOFMATHEMATICALSCIENCESSPRINGSEMESTERSEMESTER2025MATH2110-STATISTICS3Coursework1Deadline:3pm,Friday14/3/2025Yourneat,clearly-legiblesolutionsshouldbesubmittedelectronical
- 46-886 Machine Learning Fundamentals
W_X_99515681
机器学习人工智能
46-886MachineLearningFundamentalsHW1Homework1Due:Sunday,March23,11:59pm•UploadyourassignmenttoCanvas(onlyonepersonperteamneedstosubmit)•Includeawriteupcontainingyouranswerstothequestionsbelow(andyourt
- 小白学AI量化:DeepSeek+Python构建强大的金融数据挖掘与多维分析机器人
老余捞鱼
AI顾投高级策略AI探讨与学习人工智能python金融deepseek
作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:在机构主导的量化交易时代,普通投资者如何用一杯奶茶的钱(15元/天)打造专业级智能量化产品?本文将为您揭秘一个革命性的解决方案——基于国产大模型DeepSeek和Python构建的智能数据挖掘分析机器人。它不仅适用于通用网页数据抓取,更能深度应用于金融领域,精准捕捉市场信号。本文“干货”很多,请务必耐心读完。一、颠覆认知的性价比革命1.
- 【机器学习】机器学习工程实战-第3章 数据收集和准备
腊肉芥末果
机器学习工程实战机器学习人工智能
上一章:第2章项目开始前文章目录3.1关于数据的问题3.1.1数据是否可获得3.1.2数据是否相当大3.1.3数据是否可用3.1.4数据是否可理解3.1.5数据是否可靠3.2数据的常见问题3.2.1高成本3.2.2质量差3.2.3噪声(noise)3.2.4偏差(bias)3.2.5预测能力低(lowpredictivepower)3.2.6过时的样本3.2.7离群值3.2.8数据泄露/目标泄漏3
- conda篇----在已有conda环境的基础上升级python包
心惠天意
condapythonjvm
conda篇----在已有conda环境的基础上升级python包原先的python版本第一步:condaupdate--all(py11)[xxx@aivrs01xxx]$condaupdate--allCollectingpackagemetadata(current_repodata.json):doneSolvingenvironment:done==>WARNING:Anewervers
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc