4张图告诉你:为什么大数据场景中偏爱列式存储?(建议收藏)

为什么要按列存储

列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。简单来说两者的区别就是如何组织表:

  • Row-based storage stores atable in a sequence of rows.

  • Column-based storage storesa table in a sequence of columns.

下面来看一个例子:

4张图告诉你:为什么大数据场景中偏爱列式存储?(建议收藏)_第1张图片

从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。所以它们就有了如下这些优缺点:

4张图告诉你:为什么大数据场景中偏爱列式存储?(建议收藏)_第2张图片

注:关系型数据库理论回顾 - 选择(Selection)和投影(Projection)

4张图告诉你:为什么大数据场景中偏爱列式存储?(建议收藏)_第3张图片

数据压缩

刚才其实跳过了资料里提到的另一种技术:通过字典表压缩数据。为了方面后面的讲解,这部分也顺带提一下了。

下面中才是那张表本来的样子。经过字典表进行数据压缩后,表中的字符串才都变成数字了。正因为每个字符串在字典表里只出现一次了,所以达到了压缩的目的(有点像规范化和非规范化Normalize和Denomalize)。

4张图告诉你:为什么大数据场景中偏爱列式存储?(建议收藏)_第4张图片


查询执行性能

下面就是最牛的图了,通过一条查询的执行过程说明列式存储(以及数据压缩)的优点:

4张图告诉你:为什么大数据场景中偏爱列式存储?(建议收藏)_第5张图片

关键步骤如下:

1. 去字典表里找到字符串对应数字(只进行一次字符串比较)。

2. 用数字去列表里匹配,匹配上的位置设为1。

3. 把不同列的匹配结果进行位运算得到符合所有条件的记录下标。

4. 使用这个下标组装出最终的结果集。

原文:

https://blog.csdn.net/dc_726/article/details/41143175

--end--

扫描下方二维码

添加好友,备注【交流群

拉你到学习路线和资源丰富的交流群

你可能感兴趣的:(4张图告诉你:为什么大数据场景中偏爱列式存储?(建议收藏))