RunTime源码阅读(七)之load加载原理

1.入口

void
load_images(const char *path __unused, const struct mach_header *mh)
{
    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;//这个时候所有类和分类应该已加载完成,如果没有直接return
    recursive_mutex_locker_t lock(loadMethodLock);
    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);//处理类与分类中的+load并存储到数据结构中
    }
    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();//根据prepare_load_methods存储的类名和IMP,调用
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();//分类的loads调用

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}

load_images分类入口、call_load_methods分类载入方法、call_class_loads是类的load方法加载、call_category_loads分类的load方法加载。
可见:类的+load()加载优先于分类的+load加载,分类的+load方法与类的+load方法是独立的。

2. 加载准备

prepare_load_methods

void prepare_load_methods(const headerType *mhdr)
{
    size_t count, i;

    runtimeLock.assertLocked();

    classref_t *classlist = 
        _getObjc2NonlazyClassList(mhdr, &count);
    for (i = 0; i < count; i++) {
        /*
         remapClass(classlist[i])缓存中找到对应的class实例
         schedule_class_load 查找class对应的+load方法并存储在add_class_to_loadable_list中,递归优先处理父类的+load方法
         */
        schedule_class_load(remapClass(classlist[i]));
    }

    //整体与上面类似
    category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
    for (i = 0; i < count; i++) {
        category_t *cat = categorylist[i];
        Class cls = remapClass(cat->cls);
        if (!cls) continue;  // category for ignored weak-linked class
        realizeClass(cls);
        assert(cls->ISA()->isRealized());
        add_category_to_loadable_list(cat);
    }
}

static void schedule_class_load(Class cls)
{
    if (!cls) return;
    assert(cls->isRealized());  // _read_images should realize:此时所有的类已实现

    if (cls->data()->flags & RW_LOADED) return;

    //解决了为什么父类的+load会先调用
    // Ensure superclass-first ordering
    schedule_class_load(cls->superclass);//递归处理父类class的load方法

    add_class_to_loadable_list(cls);//load存储到loadable_classes数组中
    cls->setInfo(RW_LOADED); //设置+load已加载标志位
}

void add_class_to_loadable_list(Class cls)
{
    IMP method;

    loadMethodLock.assertLocked();

    method = cls->getLoadMethod();//如果有+load方法,返回对应的imp
    if (!method) return;  // Don't bother if cls has no +load method
    
    if (PrintLoading) {
        _objc_inform("LOAD: class '%s' scheduled for +load", 
                     cls->nameForLogging());
    }
    
    if (loadable_classes_used == loadable_classes_allocated) {
        loadable_classes_allocated = loadable_classes_allocated*2 + 16;
        loadable_classes = (struct loadable_class *)
            realloc(loadable_classes,
                              loadable_classes_allocated *
                              sizeof(struct loadable_class));
    }
    
    loadable_classes[loadable_classes_used].cls = cls;
    loadable_classes[loadable_classes_used].method = method;
    loadable_classes_used++;
}

void add_category_to_loadable_list(Category cat)
{
    IMP method;

    loadMethodLock.assertLocked();

    method = _category_getLoadMethod(cat);

    // Don't bother if cat has no +load method
    if (!method) return;

    if (PrintLoading) {
        _objc_inform("LOAD: category '%s(%s)' scheduled for +load", 
                     _category_getClassName(cat), _category_getName(cat));
    }
    
    if (loadable_categories_used == loadable_categories_allocated) {
        loadable_categories_allocated = loadable_categories_allocated*2 + 16;
        loadable_categories = (struct loadable_category *)
            realloc(loadable_categories,
                              loadable_categories_allocated *
                              sizeof(struct loadable_category));
    }

    loadable_categories[loadable_categories_used].cat = cat;
    loadable_categories[loadable_categories_used].method = method;
    loadable_categories_used++;
}
  1. prepare_load_methods分两段:第一段先加载类的+load方法;
  • _getObjc2NonlazyClassList:读取未加载的类的信息;
  • schedule_class_load: 递归处理cls->superclass的load方法,确保父类中的+load能被正常加载。
  • add_class_to_loadable_list:cls中的+load方法被添加到loadable_classes中;
    这一段可以看出,父类的+load方法调用优先于子类的+load方法;+load和cls存储在loadable_categories,为后面加载+load方法做准备。
  1. 第二段加载分类中的+load方法
  • add_category_to_loadable_list:分类的cls和+load方法存储到静态数组loadable_categories中

分类与类的是分开存储静态数组中的,所以+load方法不存在覆盖。

3.类方法加载

static void call_class_loads(void)
{
    int i;
    
    // Detach current loadable list.
    //loadable_classes:prepare_load_methods存储的数据结构
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
    
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;//对应的cls
        load_method_t load_method = (load_method_t)classes[i].method;//方法对应的IMP
        if (!cls) continue; 
        
        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        //调用cls对应的load:load_method是IMP,cls和SEL_load是方法参数
        (*load_method)(cls, SEL_load);
    }
    
    // Destroy the detached list.
    if (classes) free(classes);
}
  • 遍历loadable_classes方法,调用cls的SEL_load方法。

4.分类方法加载

call_category_loads

static bool call_category_loads(void)
{
    int i, shift;
    bool new_categories_added = NO;
    
    // Detach current loadable list.
    struct loadable_category *cats = loadable_categories;
    int used = loadable_categories_used;
    int allocated = loadable_categories_allocated;
    loadable_categories = nil;
    loadable_categories_allocated = 0;
    loadable_categories_used = 0;

    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Category cat = cats[i].cat;
        load_method_t load_method = (load_method_t)cats[i].method;
        Class cls;
        if (!cat) continue;

        cls = _category_getClass(cat);
        if (cls  &&  cls->isLoadable()) {
            if (PrintLoading) {
                _objc_inform("LOAD: +[%s(%s) load]\n", 
                             cls->nameForLogging(), 
                             _category_getName(cat));
            }
            (*load_method)(cls, SEL_load);
            cats[i].cat = nil;//分类去了,只有IMP
        }
    }

    // Compact detached list (order-preserving)
    // 处理多个分类?
    shift = 0;
    for (i = 0; i < used; i++) {
        if (cats[i].cat) {
            cats[i-shift] = cats[i];
        } else {
            shift++;
        }
    }
    used -= shift;

    // Copy any new +load candidates from the new list to the detached list.
    new_categories_added = (loadable_categories_used > 0);
    for (i = 0; i < loadable_categories_used; i++) {
        if (used == allocated) {
            allocated = allocated*2 + 16;
            cats = (struct loadable_category *)
                realloc(cats, allocated *
                                  sizeof(struct loadable_category));
        }
        cats[used++] = loadable_categories[i];
    }

    // Destroy the new list.
    if (loadable_categories) free(loadable_categories);

    // Reattach the (now augmented) detached list. 
    // But if there's nothing left to load, destroy the list.
    if (used) {
        loadable_categories = cats;
        loadable_categories_used = used;
        loadable_categories_allocated = allocated;
    } else {
        if (cats) free(cats);
        loadable_categories = nil;
        loadable_categories_used = 0;
        loadable_categories_allocated = 0;
    }

    if (PrintLoading) {
        if (loadable_categories_used != 0) {
            _objc_inform("LOAD: %d categories still waiting for +load\n",
                         loadable_categories_used);
        }
    }

    return new_categories_added;
}
  • 遍历loadable_categories,逐个调用cls中的+load方法

总结:

  1. 分类的加载顺序:父类->子类->分类
  2. 加载分两步:先准备加载,把对应的类、分类存储到数组中;再遍历数组,逐个调用。
  3. +load与普通方法不同,不会存在分类覆盖类的方法,每个分类中的+load也是单独存在的。

你可能感兴趣的:(RunTime源码阅读(七)之load加载原理)