本文转自: http://data.biancheng.net/view/39.html
深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如上图 是一个无向图,采用深度优先算法遍历这个图的过程为:
根据上边的过程,可以得到上图通过深度优先搜索获得的顶点的遍历次序为:
V1 -> V2 -> V4 -> V8 -> V5 -> V3 -> V6 -> V7
所谓深度优先搜索,是从图中的一个顶点出发,每次遍历当前访问顶点的临界点,一直到访问的顶点没有未被访问过的临界点为止。然后采用依次回退的方式,查看来的路上每一个顶点是否有其它未被访问的临界点。访问完成后,判断图中的顶点是否已经全部遍历完成,如果没有,以未访问的顶点为起始点,重复上述过程。
深度优先搜索是一个不断回溯的过程。
采用深度优先搜索算法遍历图的实现代码为:
#include
#define MAX_VERtEX_NUM 20 //顶点的最大个数
#define VRType int //表示顶点之间的关系的变量类型
#define InfoType char //存储弧或者边额外信息的指针变量类型
#define VertexType int //图中顶点的数据类型
typedef enum{false,true}bool; //定义bool型常量
bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
typedef struct {
VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
InfoType * info; //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
typedef struct {
VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
AdjMatrix arcs; //二维数组,记录顶点之间的关系
int vexnum,arcnum; //记录图的顶点数和弧(边)数
}MGraph;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph * G,VertexType v){
int i=0;
//遍历一维数组,找到变量v
for (; ivexnum; i++) {
if (G->vexs[i]==v) {
break;
}
}
//如果找不到,输出提示语句,返回-1
if (i>G->vexnum) {
printf("no such vertex.\n");
return -1;
}
return i;
}
//构造无向图
void CreateDN(MGraph *G){
scanf("%d,%d",&(G->vexnum),&(G->arcnum));
for (int i=0; ivexnum; i++) {
scanf("%d",&(G->vexs[i]));
}
for (int i=0; ivexnum; i++) {
for (int j=0; jvexnum; j++) {
G->arcs[i][j].adj=0;
G->arcs[i][j].info=NULL;
}
}
for (int i=0; iarcnum; i++) {
int v1,v2;
scanf("%d,%d",&v1,&v2);
int n=LocateVex(G, v1);
int m=LocateVex(G, v2);
if (m==-1 ||n==-1) {
printf("no this vertex\n");
return;
}
G->arcs[n][m].adj=1;
G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
}
}
int FirstAdjVex(MGraph G,int v)
{
//查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
for(int i = 0; i=0; w = NextAdjVex(G,v,w)){
//如果该顶点的标记位false,证明未被访问,调用深度优先搜索函数
if(!visited[w]){
DFS(G,w);
}
}
}
//深度优先搜索
void DFSTraverse(MGraph G){//
int v;
//将用做标记的visit数组初始化为false
for( v = 0; v < G.vexnum; ++v){
visited[v] = false;
}
//对于每个标记为false的顶点调用深度优先搜索函数
for( v = 0; v < G.vexnum; v++){
//如果该顶点的标记位为false,则调用深度优先搜索函数
if(!visited[v]){
DFS( G, v);
}
}
}
int main() {
MGraph G;//建立一个图的变量
CreateDN(&G);//初始化图
DFSTraverse(G);//深度优先搜索图
return 0;
}
其实在对无向图进行遍历的时候,遍历过程中所经历过的图中的顶点和边的组合,就是图的生成树或者生成森林。
例如,上图中的无向图是由 V1~V7 的顶点和编号分别为 a~i 的边组成。当使用深度优先搜索算法时,假设 V1 作为遍历的起始点,涉及到的顶点和边的遍历顺序为(不唯一):
非连通图的生成森林
非连通图在进行遍历时,实则是对非连通图中每个连通分量分别进行遍历,在遍历过程经过的每个顶点和边,就构成了每个连通分量的生成树。
非连通图中,多个连通分量构成的多个生成树为非连通图的生成森林。
例如,对上图中的非连通图 (a) 采用深度优先搜索算法遍历时,得到的深度优先生成森林(由 3 个深度优先生成树构成)如 (b) 所示(不唯一)。
非连通图在遍历生成森林时,可以采用孩子兄弟表示法将森林转化为一整棵二叉树进行存储。
具体实现的代码:
#include
#include
#define MAX_VERtEX_NUM 20 //顶点的最大个数
#define VRType int //表示顶点之间的关系的变量类型
#define VertexType int //图中顶点的数据类型
typedef enum{false,true}bool; //定义bool型常量
bool visited[MAX_VERtEX_NUM]; //设置全局数组,记录标记顶点是否被访问过
typedef struct {
VRType adj; //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
typedef struct {
VertexType vexs[MAX_VERtEX_NUM]; //存储图中顶点数据
AdjMatrix arcs; //二维数组,记录顶点之间的关系
int vexnum,arcnum; //记录图的顶点数和弧(边)数
}MGraph;
//孩子兄弟表示法的链表结点结构
typedef struct CSNode{
VertexType data;
struct CSNode * lchild;//孩子结点
struct CSNode * nextsibling;//兄弟结点
}*CSTree,CSNode;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph G,VertexType v){
int i=0;
//遍历一维数组,找到变量v
for (; iG.vexnum) {
printf("no such vertex.\n");
return -1;
}
return i;
}
//构造无向图
void CreateDN(MGraph *G){
scanf("%d,%d",&(G->vexnum),&(G->arcnum));
getchar();
for (int i=0; ivexnum; i++) {
scanf("%d",&(G->vexs[i]));
}
for (int i=0; ivexnum; i++) {
for (int j=0; jvexnum; j++) {
G->arcs[i][j].adj=0;
}
}
for (int i=0; iarcnum; i++) {
int v1,v2;
scanf("%d,%d",&v1,&v2);
int n=LocateVex(*G, v1);
int m=LocateVex(*G, v2);
if (m==-1 ||n==-1) {
printf("no this vertex\n");
return;
}
G->arcs[n][m].adj=1;
G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
}
}
int FirstAdjVex(MGraph G,int v)
{
//查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
for(int i = 0; i=0; w=NextAdjVex(G, v, w)) {
//如果该临界点标志位为false,说明还未访问
if (!visited[w]) {
//为该邻接点初始化为结点
CSTree p=(CSTree)malloc(sizeof(CSNode));
p->data=G.vexs[w];
p->lchild=NULL;
p->nextsibling=NULL;
//该结点的第一个邻接点作为孩子结点,其它邻接点作为孩子结点的兄弟结点
if (first) {
(*T)->lchild=p;
first=false;
}
//否则,为兄弟结点
else{
q->nextsibling=p;
}
q=p;
//以当前访问的顶点为树根,继续访问其邻接点
DFSTree(G, w, &q);
}
}
}
//深度优先搜索生成森林并转化为二叉树
void DFSForest(MGraph G,CSTree *T){
(*T)=NULL;
//每个顶点的标记为初始化为false
for (int v=0; vdata=G.vexs[v];
p->lchild=NULL;
p->nextsibling=NULL;
//如果树未空,则该顶点作为树的树根
if (!(*T)) {
(*T)=p;
}
//该顶点作为树根的兄弟结点
else{
q->nextsibling=p;
}
//每次都要把q指针指向新的结点,为下次添加结点做铺垫
q=p;
//以该结点为起始点,构建深度优先生成树
DFSTree(G,v,&p);
}
}
}
//前序遍历二叉树
void PreOrderTraverse(CSTree T){
if (T) {
printf("%d ",T->data);
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->nextsibling);
}
return;
}
int main() {
MGraph G;//建立一个图的变量
CreateDN(&G);//初始化图
CSTree T;
DFSForest(G, &T);
PreOrderTraverse(T);
return 0;
}
运行程序,拿图(a)中的非连通图为例,构建的深度优先生成森林,使用孩子兄弟表示法表示为
图中,3 种颜色的树各代表一棵深度优先生成树,使用孩子兄弟表示法表示,也就是将三棵树的树根相连,第一棵树的树根作为整棵树的树根。