深度优先搜索(DFS、深搜)

本文转自: http://data.biancheng.net/view/39.html

深度优先搜索

深度优先搜索是对存储的图中的顶点进行遍历的方式。
深度优先搜索(DFS、深搜)_第1张图片

深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如上图 是一个无向图,采用深度优先算法遍历这个图的过程为:

  1. 首先任意找一个未被遍历过的顶点,例如从 V1 开始,由于 V1 率先访问过了,所以,需要标记 V1 的状态为访问过;
  2. 然后遍历 V1 的邻接点,例如访问 V2 ,并做标记,然后访问 V2 的邻接点,例如 V4 (做标记),然后 V8 ,然后 V5 ;
  3. 当继续遍历 V5 的邻接点时,根据之前做的标记显示,所有邻接点都被访问过了。此时,从 V5 回退到 V8 ,看 V8
    是否有未被访问过的邻接点,如果没有,继续回退到 V4 , V2 , V1 ;
  4. 通过查看 V1 ,找到一个未被访问过的顶点 V3 ,继续遍历,然后访问 V3 邻接点 V6 ,然后 V7 ;
  5. 由于 V7 没有未被访问的邻接点,所有回退到 V6 ,继续回退至 V3 ,最后到达 V1 ,发现没有未被访问的;
  6. 最后一步需要判断是否所有顶点都被访问,如果还有没被访问的,以未被访问的顶点为第一个顶点,继续依照上边的方式进行遍历。

根据上边的过程,可以得到上图通过深度优先搜索获得的顶点的遍历次序为:

V1 -> V2 -> V4 -> V8 -> V5 -> V3 -> V6 -> V7

所谓深度优先搜索,是从图中的一个顶点出发,每次遍历当前访问顶点的临界点,一直到访问的顶点没有未被访问过的临界点为止。然后采用依次回退的方式,查看来的路上每一个顶点是否有其它未被访问的临界点。访问完成后,判断图中的顶点是否已经全部遍历完成,如果没有,以未访问的顶点为起始点,重复上述过程。

深度优先搜索是一个不断回溯的过程。

采用深度优先搜索算法遍历图的实现代码为:

#include 

#define MAX_VERtEX_NUM 20                   //顶点的最大个数
#define VRType int                          //表示顶点之间的关系的变量类型
#define InfoType char                       //存储弧或者边额外信息的指针变量类型
#define VertexType int                      //图中顶点的数据类型

typedef enum{false,true}bool;               //定义bool型常量
bool visited[MAX_VERtEX_NUM];               //设置全局数组,记录标记顶点是否被访问过

typedef struct {
    VRType adj;                             //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType * info;                        //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];        //存储图中顶点数据
    AdjMatrix arcs;                         //二维数组,记录顶点之间的关系
    int vexnum,arcnum;                      //记录图的顶点数和弧(边)数
}MGraph;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph * G,VertexType v){
    int i=0;
    //遍历一维数组,找到变量v
    for (; ivexnum; i++) {
        if (G->vexs[i]==v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i>G->vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}
//构造无向图
void CreateDN(MGraph *G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    for (int i=0; ivexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; ivexnum; i++) {
        for (int j=0; jvexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    for (int i=0; iarcnum; i++) {
        int v1,v2;
        scanf("%d,%d",&v1,&v2);
        int n=LocateVex(G, v1);
        int m=LocateVex(G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=1;
        G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
    }
}

int FirstAdjVex(MGraph G,int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for(int i = 0; i=0; w = NextAdjVex(G,v,w)){
        //如果该顶点的标记位false,证明未被访问,调用深度优先搜索函数
        if(!visited[w]){
            DFS(G,w);
        }
    }
}
//深度优先搜索
void DFSTraverse(MGraph G){//
    int v;
    //将用做标记的visit数组初始化为false
    for( v = 0; v < G.vexnum; ++v){
        visited[v] = false;
    }
    //对于每个标记为false的顶点调用深度优先搜索函数
    for( v = 0; v < G.vexnum; v++){
        //如果该顶点的标记位为false,则调用深度优先搜索函数
        if(!visited[v]){
            DFS( G, v);
        }
    }
}

int main() {
    MGraph G;//建立一个图的变量
    CreateDN(&G);//初始化图
    DFSTraverse(G);//深度优先搜索图
    return 0;
}

深度优先生成树

其实在对无向图进行遍历的时候,遍历过程中所经历过的图中的顶点和边的组合,就是图的生成树或者生成森林。

深度优先搜索(DFS、深搜)_第2张图片

例如,上图中的无向图是由 V1~V7 的顶点和编号分别为 a~i 的边组成。当使用深度优先搜索算法时,假设 V1 作为遍历的起始点,涉及到的顶点和边的遍历顺序为(不唯一):

在这里插入图片描述
此种遍历顺序构建的生成树为:
深度优先搜索(DFS、深搜)_第3张图片

非连通图的生成森林

非连通图在进行遍历时,实则是对非连通图中每个连通分量分别进行遍历,在遍历过程经过的每个顶点和边,就构成了每个连通分量的生成树。

非连通图中,多个连通分量构成的多个生成树为非连通图的生成森林。

深度优先生成森林
深度优先搜索(DFS、深搜)_第4张图片

例如,对上图中的非连通图 (a) 采用深度优先搜索算法遍历时,得到的深度优先生成森林(由 3 个深度优先生成树构成)如 (b) 所示(不唯一)。

非连通图在遍历生成森林时,可以采用孩子兄弟表示法将森林转化为一整棵二叉树进行存储。

具体实现的代码:

#include 
#include 
#define MAX_VERtEX_NUM 20                   //顶点的最大个数
#define VRType int                          //表示顶点之间的关系的变量类型
#define VertexType int                     //图中顶点的数据类型
typedef enum{false,true}bool;               //定义bool型常量
bool visited[MAX_VERtEX_NUM];               //设置全局数组,记录标记顶点是否被访问过

typedef struct {
    VRType adj;                             //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];        //存储图中顶点数据
    AdjMatrix arcs;                         //二维数组,记录顶点之间的关系
    int vexnum,arcnum;                      //记录图的顶点数和弧(边)数
}MGraph;
//孩子兄弟表示法的链表结点结构
typedef struct CSNode{
    VertexType data;
    struct CSNode * lchild;//孩子结点
    struct CSNode * nextsibling;//兄弟结点
}*CSTree,CSNode;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph G,VertexType v){
    int i=0;
    //遍历一维数组,找到变量v
    for (; iG.vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}
//构造无向图
void CreateDN(MGraph *G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    getchar();
    for (int i=0; ivexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; ivexnum; i++) {
        for (int j=0; jvexnum; j++) {
            G->arcs[i][j].adj=0;
        }
    }
    for (int i=0; iarcnum; i++) {
        int v1,v2;
        scanf("%d,%d",&v1,&v2);
        int n=LocateVex(*G, v1);
        int m=LocateVex(*G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=1;
        G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
    }
}
int FirstAdjVex(MGraph G,int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for(int i = 0; i=0; w=NextAdjVex(G, v, w)) {
        //如果该临界点标志位为false,说明还未访问
        if (!visited[w]) {
            //为该邻接点初始化为结点
            CSTree p=(CSTree)malloc(sizeof(CSNode));
            p->data=G.vexs[w];
            p->lchild=NULL;
            p->nextsibling=NULL;
            //该结点的第一个邻接点作为孩子结点,其它邻接点作为孩子结点的兄弟结点
            if (first) {
                (*T)->lchild=p;
                first=false;
            }
            //否则,为兄弟结点
            else{
                q->nextsibling=p;
            }
            q=p;
            //以当前访问的顶点为树根,继续访问其邻接点
            DFSTree(G, w, &q);
        }
    }
}
//深度优先搜索生成森林并转化为二叉树
void DFSForest(MGraph G,CSTree *T){
    (*T)=NULL;
    //每个顶点的标记为初始化为false
    for (int v=0; vdata=G.vexs[v];
            p->lchild=NULL;
            p->nextsibling=NULL;
            //如果树未空,则该顶点作为树的树根
            if (!(*T)) {
                (*T)=p;
           
            }
            //该顶点作为树根的兄弟结点
            else{
                q->nextsibling=p;
            }
            //每次都要把q指针指向新的结点,为下次添加结点做铺垫
            q=p;
            //以该结点为起始点,构建深度优先生成树
            DFSTree(G,v,&p);
        }
    }
}
//前序遍历二叉树
void PreOrderTraverse(CSTree T){
    if (T) {
        printf("%d ",T->data);
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->nextsibling);
    }
    return;
}
int main() {
    MGraph G;//建立一个图的变量
    CreateDN(&G);//初始化图
    CSTree T;
    DFSForest(G, &T);
    PreOrderTraverse(T);
    return 0;
}

运行程序,拿图(a)中的非连通图为例,构建的深度优先生成森林,使用孩子兄弟表示法表示为
深度优先搜索(DFS、深搜)_第5张图片

图中,3 种颜色的树各代表一棵深度优先生成树,使用孩子兄弟表示法表示,也就是将三棵树的树根相连,第一棵树的树根作为整棵树的树根。

你可能感兴趣的:(数据结构)