【代码分析】Pytorch版YOLO V4代码分析

YOLO V4出来也几天了,论文大致看了下,然后看到大量的优秀者实现了各个版本的YOLOV4了。

Yolo v4 论文: https://arxiv.org/abs/2004.10934

AB大神Darknet版本的源码实现: https://github.com/AlexeyAB/darknet

本文针对Pytorch版本实现的YOLOV4进行分析,感谢Tianxiaomo 分享的工程:Pytorch-YoloV4


作者分享的权重文件,下载地址:

  • baidu(https://pan.baidu.com/s/1dAGEW8cm-dqK14TbhhVetA Extraction code:dm5b)
  • google(https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT)

该权重文件yolov4.weights 是在coco数据集上训练的,目标类有80种,当前工程支持推理,不包括训练~

我的测试环境是anaconda配置的环境,pytorch1.0.1, torchvision 0.2.1;


工程目录如下:

【代码分析】Pytorch版YOLO V4代码分析_第1张图片

终端运行指令:

# 指令需要传入cfg文件路径,权重文件路径,图像路径
>>python demo.py cfg/yolov4.cfg yolov4.weights data/dog.jpg

运行结果会生成一张检测后的图:predictions.jpg

【代码分析】Pytorch版YOLO V4代码分析_第2张图片

接下来对源码做分析:

其中demo.py中,主要调用了函数detect(),其代码如下:

def detect(cfgfile, weightfile, imgfile):
    m = Darknet(cfgfile)  #穿件Darknet模型对象m

    m.print_network()    # 打印网络结构
    m.load_weights(weightfile)  #加载权重值
    print('Loading weights from %s... Done!' % (weightfile))

    num_classes = 80
    if num_classes == 20:
        namesfile = 'data/voc.names'
    elif num_classes == 80:
        namesfile = 'data/coco.names'
    else:
        namesfile = 'data/names'

    use_cuda = 0  # 是否使用cuda,工程使用的是cpu执行
    if use_cuda:
        m.cuda()   # 如果使用cuda则将模型对象拷贝至显存,默认GUP ID为0;

    img = Image.open(imgfile).convert('RGB') # PIL打开图像
    sized = img.resize((m.width, m.height))

    for i in range(2):
        start = time.time()
        boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)  # 做检测,返回的boxes是昨晚nms后的检测框;
        finish = time.time()
        if i == 1:
            print('%s: Predicted in %f seconds.' % (imgfile, (finish - start)))

    class_names = load_class_names(namesfile)   # 加载类别名
    plot_boxes(img, boxes, 'predictions.jpg', class_names)# 画框,并输出检测结果图像文件;

在创建Darknet()对象过程中,会根据传入的cfg文件做初始化工作,主要是cfg文件的解析,提取cfg中的每个block;网络结构的构建;(如下图)

【代码分析】Pytorch版YOLO V4代码分析_第3张图片


 现在先说下根据cfg文件是如何解析网络结果吧,主要调用了tool/cfg.py的parse_cfg()函数,它会返回blocks,网络结果是长这个样子的(使用Netron网络查看工具 打开cfg文件,完整版请自行尝试):

【代码分析】Pytorch版YOLO V4代码分析_第4张图片


创建网络模型是调用了darknet2pytorch.py中的create_network()函数,它会根据解析cfg得到的blocks构建网络,先创建个ModuleList模型列表,为每个block创建个Sequential(),将每个block中的卷积操作,BN操作,激活操作都放到这个Sequential()中;可以理解为每个block对应一个Sequential();

构建好的的ModuleList模型列表大致结构如下:

Darknet(
  (models): ModuleList(
    (0): Sequential(
      (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish1): Mish()
    )
    (1): Sequential(
      (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish2): Mish()
    )
    (2): Sequential(
      (conv3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish3): Mish()
    )
    (3): EmptyModule()
    (4): Sequential(
      (conv4): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish4): Mish()
    )
    (5): Sequential(
      (conv5): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish5): Mish()
    )
    (6): Sequential(
      (conv6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn6): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish6): Mish()
    )
    (7): EmptyModule()
    (8): Sequential(
      (conv7): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish7): Mish()
    )
    (9): EmptyModule()
    (10): Sequential(
      (conv8): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn8): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish8): Mish()
    )
    (11): Sequential(
      (conv9): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn9): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish9): Mish()
    )
    (12): Sequential(
      (conv10): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish10): Mish()
    )
    (13): EmptyModule()
    (14): Sequential(
      (conv11): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn11): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish11): Mish()
    )
    (15): Sequential(
      (conv12): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn12): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish12): Mish()
    )
    (16): Sequential(
      (conv13): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn13): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish13): Mish()
    )
    (17): EmptyModule()
    (18): Sequential(
      (conv14): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn14): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish14): Mish()
    )
    (19): Sequential(
      (conv15): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn15): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish15): Mish()
    )
    (20): EmptyModule()
    (21): Sequential(
      (conv16): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn16): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish16): Mish()
    )
    (22): EmptyModule()
    (23): Sequential(
      (conv17): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn17): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish17): Mish()
    )
    (24): Sequential(
      (conv18): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn18): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish18): Mish()
    )
    (25): Sequential(
      (conv19): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn19): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish19): Mish()
    )
    (26): EmptyModule()
    (27): Sequential(
      (conv20): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn20): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish20): Mish()
    )
    (28): Sequential(
      (conv21): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn21): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish21): Mish()
    )
    (29): Sequential(
      (conv22): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn22): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish22): Mish()
    )
    (30): EmptyModule()
    (31): Sequential(
      (conv23): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn23): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish23): Mish()
    )
    (32): Sequential(
      (conv24): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn24): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish24): Mish()
    )
    (33): EmptyModule()
    (34): Sequential(
      (conv25): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn25): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish25): Mish()
    )
    (35): Sequential(
      (conv26): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn26): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish26): Mish()
    )
    (36): EmptyModule()
    (37): Sequential(
      (conv27): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn27): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish27): Mish()
    )
    (38): Sequential(
      (conv28): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn28): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish28): Mish()
    )
    (39): EmptyModule()
    (40): Sequential(
      (conv29): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn29): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish29): Mish()
    )
    (41): Sequential(
      (conv30): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn30): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish30): Mish()
    )
    (42): EmptyModule()
    (43): Sequential(
      (conv31): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn31): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish31): Mish()
    )
    (44): Sequential(
      (conv32): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn32): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish32): Mish()
    )
    (45): EmptyModule()
    (46): Sequential(
      (conv33): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn33): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish33): Mish()
    )
    (47): Sequential(
      (conv34): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn34): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish34): Mish()
    )
    (48): EmptyModule()
    (49): Sequential(
      (conv35): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn35): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish35): Mish()
    )
    (50): Sequential(
      (conv36): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn36): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish36): Mish()
    )
    (51): EmptyModule()
    (52): Sequential(
      (conv37): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn37): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish37): Mish()
    )
    (53): EmptyModule()
    (54): Sequential(
      (conv38): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn38): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish38): Mish()
    )
    (55): Sequential(
      (conv39): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn39): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish39): Mish()
    )
    (56): Sequential(
      (conv40): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn40): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish40): Mish()
    )
    (57): EmptyModule()
    (58): Sequential(
      (conv41): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn41): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish41): Mish()
    )
    (59): Sequential(
      (conv42): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn42): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish42): Mish()
    )
    (60): Sequential(
      (conv43): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn43): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish43): Mish()
    )
    (61): EmptyModule()
    (62): Sequential(
      (conv44): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn44): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish44): Mish()
    )
    (63): Sequential(
      (conv45): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn45): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish45): Mish()
    )
    (64): EmptyModule()
    (65): Sequential(
      (conv46): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn46): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish46): Mish()
    )
    (66): Sequential(
      (conv47): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn47): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish47): Mish()
    )
    (67): EmptyModule()
    (68): Sequential(
      (conv48): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn48): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish48): Mish()
    )
    (69): Sequential(
      (conv49): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn49): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish49): Mish()
    )
    (70): EmptyModule()
    (71): Sequential(
      (conv50): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn50): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish50): Mish()
    )
    (72): Sequential(
      (conv51): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn51): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish51): Mish()
    )
    (73): EmptyModule()
    (74): Sequential(
      (conv52): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn52): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish52): Mish()
    )
    (75): Sequential(
      (conv53): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn53): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish53): Mish()
    )
    (76): EmptyModule()
    (77): Sequential(
      (conv54): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn54): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish54): Mish()
    )
    (78): Sequential(
      (conv55): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn55): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish55): Mish()
    )
    (79): EmptyModule()
    (80): Sequential(
      (conv56): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn56): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish56): Mish()
    )
    (81): Sequential(
      (conv57): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn57): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish57): Mish()
    )
    (82): EmptyModule()
    (83): Sequential(
      (conv58): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn58): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish58): Mish()
    )
    (84): EmptyModule()
    (85): Sequential(
      (conv59): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn59): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish59): Mish()
    )
    (86): Sequential(
      (conv60): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn60): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish60): Mish()
    )
    (87): Sequential(
      (conv61): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn61): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish61): Mish()
    )
    (88): EmptyModule()
    (89): Sequential(
      (conv62): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn62): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish62): Mish()
    )
    (90): Sequential(
      (conv63): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn63): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish63): Mish()
    )
    (91): Sequential(
      (conv64): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn64): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish64): Mish()
    )
    (92): EmptyModule()
    (93): Sequential(
      (conv65): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn65): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish65): Mish()
    )
    (94): Sequential(
      (conv66): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn66): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish66): Mish()
    )
    (95): EmptyModule()
    (96): Sequential(
      (conv67): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn67): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish67): Mish()
    )
    (97): Sequential(
      (conv68): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn68): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish68): Mish()
    )
    (98): EmptyModule()
    (99): Sequential(
      (conv69): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn69): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish69): Mish()
    )
    (100): Sequential(
      (conv70): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn70): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish70): Mish()
    )
    (101): EmptyModule()
    (102): Sequential(
      (conv71): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn71): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish71): Mish()
    )
    (103): EmptyModule()
    (104): Sequential(
      (conv72): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn72): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (mish72): Mish()
    )
    (105): Sequential(
      (conv73): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn73): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky73): LeakyReLU(negative_slope=0.1, inplace)
    )
    (106): Sequential(
      (conv74): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn74): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky74): LeakyReLU(negative_slope=0.1, inplace)
    )
    (107): Sequential(
      (conv75): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn75): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky75): LeakyReLU(negative_slope=0.1, inplace)
    )
    (108): MaxPoolStride1()
    (109): EmptyModule()
    (110): MaxPoolStride1()
    (111): EmptyModule()
    (112): MaxPoolStride1()
    (113): EmptyModule()
    (114): Sequential(
      (conv76): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn76): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky76): LeakyReLU(negative_slope=0.1, inplace)
    )
    (115): Sequential(
      (conv77): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn77): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky77): LeakyReLU(negative_slope=0.1, inplace)
    )
    (116): Sequential(
      (conv78): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn78): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky78): LeakyReLU(negative_slope=0.1, inplace)
    )
    (117): Sequential(
      (conv79): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn79): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky79): LeakyReLU(negative_slope=0.1, inplace)
    )
    (118): Upsample()
    (119): EmptyModule()
    (120): Sequential(
      (conv80): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn80): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky80): LeakyReLU(negative_slope=0.1, inplace)
    )
    (121): EmptyModule()
    (122): Sequential(
      (conv81): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn81): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky81): LeakyReLU(negative_slope=0.1, inplace)
    )
    (123): Sequential(
      (conv82): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn82): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky82): LeakyReLU(negative_slope=0.1, inplace)
    )
    (124): Sequential(
      (conv83): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn83): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky83): LeakyReLU(negative_slope=0.1, inplace)
    )
    (125): Sequential(
      (conv84): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn84): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky84): LeakyReLU(negative_slope=0.1, inplace)
    )
    (126): Sequential(
      (conv85): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn85): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky85): LeakyReLU(negative_slope=0.1, inplace)
    )
    (127): Sequential(
      (conv86): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn86): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky86): LeakyReLU(negative_slope=0.1, inplace)
    )
    (128): Upsample()
    (129): EmptyModule()
    (130): Sequential(
      (conv87): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn87): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky87): LeakyReLU(negative_slope=0.1, inplace)
    )
    (131): EmptyModule()
    (132): Sequential(
      (conv88): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn88): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky88): LeakyReLU(negative_slope=0.1, inplace)
    )
    (133): Sequential(
      (conv89): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn89): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky89): LeakyReLU(negative_slope=0.1, inplace)
    )
    (134): Sequential(
      (conv90): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn90): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky90): LeakyReLU(negative_slope=0.1, inplace)
    )
    (135): Sequential(
      (conv91): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn91): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky91): LeakyReLU(negative_slope=0.1, inplace)
    )
    (136): Sequential(
      (conv92): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn92): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky92): LeakyReLU(negative_slope=0.1, inplace)
    )
    (137): Sequential(
      (conv93): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn93): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky93): LeakyReLU(negative_slope=0.1, inplace)
    )
    (138): Sequential(
      (conv94): Conv2d(256, 255, kernel_size=(1, 1), stride=(1, 1))
    )
    (139): YoloLayer()
    (140): EmptyModule()
    (141): Sequential(
      (conv95): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn95): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky95): LeakyReLU(negative_slope=0.1, inplace)
    )
    (142): EmptyModule()
    (143): Sequential(
      (conv96): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn96): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky96): LeakyReLU(negative_slope=0.1, inplace)
    )
    (144): Sequential(
      (conv97): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn97): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky97): LeakyReLU(negative_slope=0.1, inplace)
    )
    (145): Sequential(
      (conv98): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn98): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky98): LeakyReLU(negative_slope=0.1, inplace)
    )
    (146): Sequential(
      (conv99): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn99): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky99): LeakyReLU(negative_slope=0.1, inplace)
    )
    (147): Sequential(
      (conv100): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn100): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky100): LeakyReLU(negative_slope=0.1, inplace)
    )
    (148): Sequential(
      (conv101): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn101): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky101): LeakyReLU(negative_slope=0.1, inplace)
    )
    (149): Sequential(
      (conv102): Conv2d(512, 255, kernel_size=(1, 1), stride=(1, 1))
    )
    (150): YoloLayer()
    (151): EmptyModule()
    (152): Sequential(
      (conv103): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn103): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky103): LeakyReLU(negative_slope=0.1, inplace)
    )
    (153): EmptyModule()
    (154): Sequential(
      (conv104): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn104): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky104): LeakyReLU(negative_slope=0.1, inplace)
    )
    (155): Sequential(
      (conv105): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn105): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky105): LeakyReLU(negative_slope=0.1, inplace)
    )
    (156): Sequential(
      (conv106): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn106): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky106): LeakyReLU(negative_slope=0.1, inplace)
    )
    (157): Sequential(
      (conv107): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn107): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky107): LeakyReLU(negative_slope=0.1, inplace)
    )
    (158): Sequential(
      (conv108): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn108): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky108): LeakyReLU(negative_slope=0.1, inplace)
    )
    (159): Sequential(
      (conv109): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn109): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (leaky109): LeakyReLU(negative_slope=0.1, inplace)
    )
    (160): Sequential(
      (conv110): Conv2d(1024, 255, kernel_size=(1, 1), stride=(1, 1))
    )
    (161): YoloLayer()
  )
)

返回demo.py 的detect()函数,构件好Darknet对象后,打印网络结构图,然后调用darknet2pytorch.py中的load_weights()加载权重文件,这里介绍下这个权重文件中的数值分别是什么以及怎么排序的。

对于没有bias的模型数据,从yolov4.weights加载的模型数据,其数值排列顺序为先是BNbiasgamma),然后是BNweightalpha)值,然后是BNmean,然后是BNvar, 最后是卷积操作的权重值,如下图,buf是加载后的yolov4.weights数据内容;网络第一个卷积核个数为32个,其对应的BN2操作的bias也有32个,而卷积核参数为3x3x3x32 =864 (含义分别是输入通道是3,因为图像是三通道的,3x3的卷积核大小,然后输出核个数是32)

【代码分析】Pytorch版YOLO V4代码分析_第5张图片

 【代码分析】Pytorch版YOLO V4代码分析_第6张图片

 而如下几个block类型在训练过程中是不会生成权重值的,所以不用从yolov4.weights中取值;

 elif block['type'] == 'maxpool':
                pass
            elif block['type'] == 'reorg':
                pass
            elif block['type'] == 'upsample':
                pass
            elif block['type'] == 'route':
                pass
            elif block['type'] == 'shortcut':
                pass
            elif block['type'] == 'region':
                pass
            elif block['type'] == 'yolo':
                pass
            elif block['type'] == 'avgpool':
                pass
            elif block['type'] == 'softmax':
                pass
            elif block['type'] == 'cost':
                pass

完成cfg文件的解析,模型的创建与权重文件的加载之后,现在要做的就是执行检测操作了,主要调用了utils/utils.py中的do_detect()函数,在demo.py中就是这行代码:boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)

def do_detect(model, img, conf_thresh, nms_thresh, use_cuda=1):
    model.eval()  #模型做推理
    t0 = time.time()

    if isinstance(img, Image.Image):
        width = img.width
        height = img.height
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes()))
        img = img.view(height, width, 3).transpose(0, 1).transpose(0, 2).contiguous() # CxHxW
        img = img.view(1, 3, height, width)  # 对图像维度做变换,BxCxHxW
        img = img.float().div(255.0)         # [0-255] --> [0-1]
    elif type(img) == np.ndarray and len(img.shape) == 3:  # cv2 image
        img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0)
    elif type(img) == np.ndarray and len(img.shape) == 4:
        img = torch.from_numpy(img.transpose(0, 3, 1, 2)).float().div(255.0)
    else:
        print("unknow image type")
        exit(-1)

    if use_cuda:
        img = img.cuda()
    img = torch.autograd.Variable(img)


    list_boxes = model(img)  # 主要是调用了模型的forward操作,返回三个yolo层的输出

    anchors = [12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401]
    num_anchors = 9  # 3个yolo层共9种锚点
    anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    strides = [8, 16, 32]   # 每个yolo层相对输入图像尺寸的减少倍数分别为8,16,32
    anchor_step = len(anchors) // num_anchors
    boxes = []
    for i in range(3):
        masked_anchors = []
        for m in anchor_masks[i]:
            masked_anchors += anchors[m * anchor_step:(m + 1) * anchor_step]
        masked_anchors = [anchor / strides[i] for anchor in masked_anchors]
        boxes.append(get_region_boxes1(list_boxes[i].data.numpy(), 0.6, 80, masked_anchors, len(anchor_masks[i])))
        # boxes.append(get_region_boxes(list_boxes[i], 0.6, 80, masked_anchors, len(anchor_masks[i])))
    if img.shape[0] > 1:
        bboxs_for_imgs = [
            boxes[0][index] + boxes[1][index] + boxes[2][index]
            for index in range(img.shape[0])]
        # 分别对每一张图像做nms
        boxes = [nms(bboxs, nms_thresh) for bboxs in bboxs_for_imgs]
    else:
        boxes = boxes[0][0] + boxes[1][0] + boxes[2][0]
        boxes = nms(boxes, nms_thresh)

    return boxes   # 返回nms后的boxes

模型forward后输出结果存在list_boxes中,因为有3yolo输出层,所以这个列表list_boxes中又分为3个子列表;

其中list_boxes[0]中存放的是第一个yolo层输出,其特征图大小对于原图缩放尺寸为8,即strides[0], 对于608x608图像来说,该层的featuremap尺寸为608/8=76;则该层的yolo输出数据维度为[batch, (classnum+4+1)*num_anchors, feature_h, feature_w] , 对于80类的coco来说,测试图像为1,每个yolo层每个特征图像点有3个锚点,该yolo层输出是[1,255,76,76];对应锚点大小为[1.5,2.0,2.375,4.5,5.0,3.5]; (6个数分别是3个锚点的wh,按照w1,h1,w2,h2,w3,h3排列);

同理第二个yolo层检测结果维度为[1,255,38,38],对应锚点大小为:[2.25,4.6875,4.75,3.4375,4.5,9.125],输出为 [1,255,38,38]

第三yolo层检测维度为[1,255,19,19],对应锚点大小为:[4.4375,3.4375,6.0,7.59375,14.34375,12.53125]输出为 [1,255,19,19];


do_detect()函数中主要是调用了get_region_boxes1(output, conf_thresh, num_classes, anchors, num_anchors, only_objectness=1, validation=False) 这个函数对forward后的output做解析并做nms操作;

每个yolo层输出数据分析,对于第一个yolo层,输出维度为[1,85*3,76,76 ]; 会将其reshape[85, 1*3*76*76],即有1*3*76*76个锚点在预测,每个锚点预测信息有80个类别的概率和4个位置信息和1个是否包含目标的置信度;下图是第一个yolo输出层的数据(实际绘制网格数量不正确,此处只是做说明用

【代码分析】Pytorch版YOLO V4代码分析_第7张图片

 每个输出的对应代码实现为:

【代码分析】Pytorch版YOLO V4代码分析_第8张图片

继续结合上面的图,分析对于某一个yolo层输出的数据是怎么排列的,其示意图如下:

 【代码分析】Pytorch版YOLO V4代码分析_第9张图片

 如果置信度满足阈值要求,则将预测的box保存到列表(其中id是所有output的索引,其值在0~batch*anchor_num*h*w范围内)

 

if conf > conf_thresh:
   bcx = xs[ind]
   bcy = ys[ind]
   bw = ws[ind]
   bh = hs[ind]
   cls_max_conf = cls_max_confs[ind]
   cls_max_id = cls_max_ids[ind]
   box = [bcx / w, bcy / h, bw / w, bh / h, det_conf, cls_max_conf, cls_max_id]

对于3个yolo层先是简单的对每个yolo层输出中是否含有目标做了过滤(含有目标的概率大于阈值);然后就是对三个过滤后的框合并到一个list中作NMS操作了;涉及的代码如下:

def nms(boxes, nms_thresh):
    if len(boxes) == 0:
        return boxes

    det_confs = torch.zeros(len(boxes))
    for i in range(len(boxes)):
        det_confs[i] = 1 - boxes[i][4]

    _, sortIds = torch.sort(det_confs)  # sort是按照从小到大排序,那么sortlds中是按照有目标的概率由大到小排序
    out_boxes = []
    for i in range(len(boxes)):
        box_i = boxes[sortIds[i]]
        if box_i[4] > 0:
            out_boxes.append(box_i)   # 取出有目标的概率最大的box放入out_boxes中;
            for j in range(i + 1, len(boxes)):  #然后将剩下的box_j都和这个box_i进行IOU计算,若与box_i重叠率大于阈值,则将box_j的包含目标概率值置为0(即不选它)
                box_j = boxes[sortIds[j]]
                if bbox_iou(box_i, box_j, x1y1x2y2=False) > nms_thresh:
                    # print(box_i, box_j, bbox_iou(box_i, box_j, x1y1x2y2=False))
                    box_j[4] = 0
    return out_boxes

补充:

论文中提到的mish激活函数

公式是这样的(其中x是输入)

对应的图是:

【代码分析】Pytorch版YOLO V4代码分析_第10张图片

 

##Pytorch中的代码实现为:
class Mish(torch.nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        x = x * (torch.tanh(torch.nn.functional.softplus(x)))
        return x

#--------------------------------------------------------------#
Tensorflow的代码实现为:
import tensorflow as tf
from tensorflow.keras.layers import Activation
from tensorflow.keras.utils import get_custom_objects
class Mish(Activation):    
    def __init__(self, activation, **kwargs):        
        super(Mish, self).__init__(activation, **kwargs)        
        self.__name__ = 'Mish'
def mish(inputs):
    return inputs * tf.math.tanh(tf.math.softplus(inputs))
get_custom_objects().update({'Mish': Mish(mish)})

#使用方法
x = Activation('Mish')(x)

文中提到的SPP结构大致是:

【代码分析】Pytorch版YOLO V4代码分析_第11张图片

 

Pytorch指定运行的GPUID号的方法,https://www.cnblogs.com/jfdwd/p/11434332.html 

 

 

 

 

你可能感兴趣的:(深度学习/机器学习,深度学习【理论+实践】)