1.reduce(function)
reduce将RDD中元素两两传递给输入函数,同时产生一个新值,新值与RDD中下一个元素再被传递给输入函数,直到最后只有一个值为止。
/**
* Reduce案例
*/
private static void reduce() {
// 创建SparkConf和JavaSparkContext
SparkConf conf = new SparkConf()
.setAppName("reduce")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
JavaRDD<Integer> numbers = sc.parallelize(numberList);
// 使用reduce操作对集合中的数字进行累加
// reduce操作的原理:
// 首先将第一个和第二个元素,传入call()方法,进行计算,会获取一个结果,比如1 + 2 = 3
// 接着将该结果与下一个元素传入call()方法,进行计算,比如3 + 3 = 6
// 以此类推
// 所以reduce操作的本质,就是聚合,将多个元素聚合成一个元素
int sum = numbers.reduce(new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
System.out.println(sum);
// 关闭JavaSparkContext
sc.close();
}
2.collect()
将一个RDD以一个Array数组形式返回其中的所有元素。(具体内容参见:
https://blog.csdn.net/Fortuna_i/article/details/80851775)
/**
* Collect java版本
*/
private static void collect(){
// 创建SparkConf和JavaSparkContext
SparkConf conf = new SparkConf().setAppName("collect").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
List<Integer> numberList = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
JavaRDD<Integer> numbers = sc.parallelize(numberList);
//使用map操作将集合中所有数字乘以2
JavaRDD<Integer> doubleNumbers = numbers.map(
new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
// 不用foreach action操作,在远程集群上遍历rdd中的元素
// 而使用collect操作,将分布在远程集群上的doubleNumbers RDD的数据拉取到本地
// 这种方式,一般不建议使用,因为如果rdd中的数据量比较大的话,比如超过1万条
// 那么性能会比较差,因为要从远程走大量的网络传输,将数据获取到本地
// 此外,除了性能差,还可能在rdd中数据量特别大的情况下,发生oom异常,内存溢出
// 因此,通常,还是推荐使用foreach action操作,来对最终的rdd元素进行处理
List<Integer> doubleNumberList = doubleNumbers.collect();
for(Integer num : doubleNumberList) {
System.out.println(num);
}
// 关闭JavaSparkContext
sc.close();
}
3.count()
返回数据集中元素个数,默认Long类型
/**
* Count java版本
*/
private static void count() {
// 创建SparkConf和JavaSparkContext
SparkConf conf = new SparkConf()
.setAppName("count")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
JavaRDD<Integer> numbers = sc.parallelize(numberList);
// 对rdd使用count操作,统计它有多少个元素
long count = numbers.count();
System.out.println(count);
// 关闭JavaSparkContext
sc.close();
}
4.take(n)
返回一个包含数据集前n个元素的数组(从0下标到n-1下标的元素),不排序。
/**
* Take操作 java版本
*/
private static void take() {
// 创建SparkConf和JavaSparkContext
SparkConf conf = new SparkConf()
.setAppName("take")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
JavaRDD<Integer> numbers = sc.parallelize(numberList);
// 对rdd使用count操作,统计它有多少个元素
// take操作,与collect类似,也是从远程集群上,获取rdd的数据
// 但是collect是获取rdd的所有数据,take只是获取前n个数据
List<Integer> top3Numbers = numbers.take(3);
for(Integer num : top3Numbers) {
System.out.println(num);
}
// 关闭JavaSparkContext
sc.close();
}
5.saveAsTextFile(path)
将dataSet中元素以文本文件的形式写入本地文件系统或者HDFS等。Spark将对每个元素调用toString方法,将数据元素转换为文本文件中的一行记录。
若将文件保存到本地文件系统,那么只会保存在executor所在机器的本地目录。
/**
* saveAsTextFile java版本
*/
private static void saveAsTextFile() {
// 创建SparkConf和JavaSparkContext
SparkConf conf = new SparkConf()
.setAppName("saveAsTextFile").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
JavaRDD<Integer> numbers = sc.parallelize(numberList);
// 使用map操作将集合中所有数字乘以2
JavaRDD<Integer> doubleNumbers = numbers.map(
new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
// 直接将rdd中的数据,保存在HFDS文件中
// 但是要注意,我们这里只能指定文件夹,也就是目录
// 那么实际上,会保存为目录中的/double_number.txt/part-00000文件
//doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt");
doubleNumbers.saveAsTextFile("C:\\Users\\Desktop\\spark");
// 关闭JavaSparkContext
sc.close();
}
6.countByKey()
用于统计RDD[K,V]中每个K的数量,返回具有每个key的计数的(k,int)pairs的hashMap。
/**
* countByKey java版本
*/
private static void countByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("countByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, String>> scoreList = Arrays.asList(
new Tuple2<String, String>("class1", "leo"),
new Tuple2<String, String>("class2", "jack"),
new Tuple2<String, String>("class1", "marry"),
new Tuple2<String, String>("class2", "tom"),
new Tuple2<String, String>("class2", "david"));
// 并行化集合,创建JavaPairRDD
JavaPairRDD<String, String> students = sc.parallelizePairs(scoreList);
// 对rdd应用countByKey操作,统计每个班级的学生人数,也就是统计每个key对应的元素个数
// 这就是countByKey的作用
// countByKey返回的类型,直接就是Map
Map<String, Object> studentCounts = students.countByKey();
for(Map.Entry<String, Object> studentCount : studentCounts.entrySet()) {
System.out.println(studentCount.getKey() + ": " + studentCount.getValue());
}
// 关闭JavaSparkContext
sc.close();
}