- 嵌入式人工智能应用- 第八章 车牌识别
数贾电子科技
嵌入式人工智能应用人工智能
嵌入式人工智能应用文章目录嵌入式人工智能应用1车牌识别1.1概述1.2车牌说明1.3车牌识别原理1.4车牌识别难点2代码部署2.1进入项目里面2.2编译和运行2.3运行结果1车牌识别1.1概述车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件设备一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机
- Akamai 与 AWS 风控分析与绕过技术探讨
qq_33253945
aws云计算爬虫网络爬虫算法安全
1.引言本文将深入探讨Akamai风控和AWS签名算法的技术细节。请注意,文中内容仅供技术研究和学习交流使用。2.Akamai风控核心要素Akamai的主要风控机制包含以下几个关键点:Canvas指纹识别每个浏览器环境都有其独特的Canvas指纹这是风控系统的核心识别方式之一用户行为分析鼠标移动轨迹检测操作行为模式识别相关参数的实时计算与验证JA3指纹TLS握手特征识别客户端环境特征分析代码执行流
- DeepSeek该选蒸馏版还是满血版
飞翔的FOX
人工智能
针对不同版本的DeepSeek,需要从多个维度综合分析:1.模型规模与基础能力671B模型在理论上具备更强的底层推理能力:更大参数量意味着更强的模式识别、逻辑推理和知识储备能力,尤其在跨领域、开放域任务中优势显著。70B模型若未经过充分行业适配,其原始能力上限低于671B。但在特定场景下,通过优化可能突破这一限制。2.行业数据适配的关键作用长期迭代的70B模型可通过以下方式缩小差距:领域微调:持续
- 【春招笔试真题】饿了么2025.03.07-开发岗真题
春秋招笔试突围
最新互联网春秋招试题合集java算法网络
饿了么2025.03.07-开发岗题目1️⃣:统计01串中0和1的个数,通过计算可能的交换方式确定不同字符串数量2️⃣:使用模板匹配技术识别验证码图片中的"#"符号分布模式3️⃣:构建字典树(Trie)优化异或查询,实现高效的数字黑板游戏整体难度这套题目整体难度适中,由简到难逐步递进:第一题是基础的计数问题,需要理解交换操作的特性第二题是模式识别问题,需要实现模板匹配第三题是高级数据结构应用,需要
- 基于深度学习的恶意软件检测系统:设计与实现
机器懒得学习
深度学习人工智能
引言随着信息技术的飞速发展,恶意软件(如病毒、木马、勒索软件等)对全球网络安全构成了严重威胁。传统的恶意软件检测方法(如特征码匹配、行为分析等)在面对新型恶意软件变种时往往力不从心。近年来,深度学习技术在模式识别和分类任务中取得了显著成效,为恶意软件检测领域带来了新的机遇。本文将详细介绍一个基于深度学习的恶意软件检测系统的开发过程,该系统利用长短期记忆网络(LSTM)对Windows可执行程序的A
- Deepseek r1回答:人工智能的本质是什么? 给人类社会带来的意义是什么? 相比于之前的互联网革命,这一轮的人工智能革命的特点和异同点有哪些?
强化学习曾小健
Deepseek原理与使用人工智能
嗯,用户问的是人工智能的本质、对社会的意义,以及和互联网革命的比较。首先得拆解这三个问题,逐个分析。用户可能对AI有一定了解,但想深入理解其核心和影响。可能需要从技术、社会、历史角度切入。先想AI的本质。本质是什么?是模拟人类智能,还是数据处理?可能需要提到机器学习、深度学习,尤其是神经网络。但本质可能更深层,比如自主决策、模式识别。还要区分弱AI和强AI,现在都是弱AI,专注于特定任务。然后是意
- JAVA学习-练习试用Java实现“使用神经网络算法对大数据集进行模式识别和筛选”
守护者170
java学习java学习
问题:实现一个Java程序,使用神经网络算法对大数据集进行模式识别和筛选。解答思路:要实现一个使用神经网络算法对大数据集进行模式识别和筛选的Java程序,我们可以使用一个简单的多层感知器(MLP)模型。以下是一个使用Java实现的简单示例,其中使用了'java.util'包中的数据结构和算法。一、在这个例子中,我们将使用以下步骤:1.准备数据集(这里我们将随机生成一些数据)。2.定义一个简单的多层
- 山东科技大学计算机科学与技术研究生导师,山东科技大学-计算机科学与工程学院...
weixin_39898380
孙忠林,男,教授,硕士生导师,1982年7月本科毕业于东北工学院计算机科学与工程专业,1997年7月取得山东科技大学计算机应用技术专业硕士学位。2009年7月取得山东科技大学安全工程技术专业博士学位。为本科生主要讲授《编译原理》、《数据库系统》等课程,为硕士研究生主要讲授《模式识别》、《数据库技术》等课程。主要研究方向是模式识别、数据库系统、系统集成及安全工程方面的系统及预测研究。作为项目主持人承
- 手写数字识别项目:从原理到实践
北屿升:
微信新浪微博facebook微信公众平台百度
在当今数字化时代,手写数字识别作为模式识别和人工智能领域的重要应用,有着广泛的用途,如邮政信封上的邮编识别、银行支票上的数字处理等。本文将详细介绍手写数字识别项目的相关内容,包括原理、数据集、实现步骤和应用前景。一、手写数字识别原理手写数字识别主要依赖于模式识别和机器学习技术。其基本原理是将手写数字的图像转换为计算机能够处理的数字信号,然后通过特征提取和分类算法来判断该数字的具体值。常用的特征提取
- 算法比赛中的构造题及一些经典套路
小王Jacky
编程算法提高(c++)算法
什么是构造构造题的定义构造要求解题者通过观察问题的结果的规律,找到一种通用的方法或者模式,使得问题规模增大时,依然能够高效地得到答案如何解决构造题1.状态转移:在动态规划问题中,状态转移是核心概念。你需要考虑如何从一个状态转移到另一个状态,并且这种转移会带来什么影响。这通常涉及到定义状态、状态转移方程和边界条件。2.模式识别:在解决构造题时,尝试识别问题中的模式或特征。这有助于你更好地理解问题的本
- 神经网络:人工智能的核心技术
m0_75126181
人工智能神经网络深度学习
神经网络简介神经网络是一种模仿生物神经系统的计算模型,由大量相互连接的神经元组成。它通过学习大量的数据来完成复杂的模式识别和决策任务,是当前人工智能和机器学习领域最重要的技术之一。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理和特征提取,输出层产生最终结果。神经元之间通过带权重的连接相互作用,通过调整这些权重来实现学习过程。神经网络的工作原理神经网络的工作原
- AI大模型教程入门到精通,非常详细收藏我这一篇就够了!AI大模型零基础入门教程(适合小白)
AGI大模型学习
人工智能大模型应用大模型AI产品经理学习AI大模型大模型教程
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- 【数据挖掘】Matplotlib
dundunmm
数据挖掘数据挖掘人工智能matplotlibpython
Matplotlib是Python最常用的数据可视化库之一,在数据挖掘过程中,主要用于数据探索(EDA)、趋势分析、模式识别和结果展示。1.Matplotlib基础1.1安装&导入#如果未安装Matplotlib,请先安装#pipinstallmatplotlibimportmatplotlib.pyplotaspltimportnumpyasnp1.2基本绘图x=np.linspace(0,10
- [Github推荐]CVPR2019录用论文下载及可视化论文网站
spearhead_cai
计算机视觉深度学习科研论文CVPRGithub计算机视觉深度学习
简介CVPR是IEEEConferenceonComputerVisionandPatternRecognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。它是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是ICCV和ECCV),本会议每年都会有固
- 模式识别课程设计:人脸识别 背景与问题引入之问题描述
XLYcmy
模式识别网络安全人工智能课程设计模式识别人脸识别PCALLM
1.2问题描述通过之前的背景介绍可以知道人脸识别技术作为计算机视觉和模式识别领域的重要研究方向,已广泛应用于身份验证、安全监控、智能家居等多个领域。随着计算机硬件性能的不断提升和深度学习技术的成熟,人脸识别的精度和应用场景不断扩展。本研究设计了一种基于主成分分析(PCA)[7]和K-L变换的人脸识别系统,利用ORL人脸数据库作为数据源,对输入的人脸图像进行识别,并输出与其特征最相似的人脸。该系统的
- KNN 算法性能跃升秘籍:优化实战,打造高效分类利器!
清水白石008
开发语言学习笔记人工智能算法分类机器学习
KNN算法性能跃升秘籍:优化实战,打造高效分类利器!今天,我想和大家深入探讨一种经典而实用的机器学习算法——K近邻(K-NearestNeighbors,KNN)。KNN算法以其原理简单、易于实现、无需显式训练等特点,在模式识别、分类、回归等领域得到了广泛应用。然而,正如任何算法一样,基础的KNN算法也存在着性能瓶颈,尤其是在处理大规模数据集和高维度特征时,其计算效率和预测精度都可能受到挑战。你是
- 基于Matlab实现汽车远近光灯识别的详细步骤及代码示例
go5463158465
matlab算法机器学习matlab汽车开发语言
以下是一个基于Matlab实现汽车远近光灯识别的详细步骤及代码示例,主要通过图像处理技术来区分远光灯和近光灯。整体思路图像预处理:包括读取图像、灰度化、去噪等操作,以提高后续处理的准确性。边缘检测:找出图像中的边缘信息,有助于定位灯光区域。特征提取:提取灯光区域的特征,如亮度、面积、形状等。模式识别:根据提取的特征,利用阈值或机器学习方法进行远近光灯的分类。代码实现%读取图像image=imrea
- DeepSeek颠覆传统教育:揭秘AI作业批改如何实现秒级反馈与精准提升
Coderabo
DeepSeekR1模型企业级应用人工智能
DeepSeek智能教育新突破:基于深度学习的作业批改与个性化反馈系统详解一、研究背景与意义在教育数字化转型的浪潮中,DeepSeek研发团队基于自研大语言模型,构建了新一代智能作业批改系统。该系统通过深度学习技术实现作业的自动化评分与个性化反馈,有效解决了传统教育中教师工作负荷大、反馈周期长、个性化不足等痛点。二、系统架构设计核心模块组成文本预处理模块深度学习评分引擎错误模式识别模块个性化反馈生
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- Prompt:创造性的系统分析者
大道归简
Promotprompt
分享的提示词:你是一个创造性的系统分析者,作为咨询师,你具有以下特质:基础能力:深入理解我的系统性模式识别模式间的隐藏联系发现出人意料的关联提供令人惊讶的洞见工作方式:在每次回应中至少提供一个让我意外的观察大胆预测我尚未觉察的模式联系建立跨领域的独特连接揭示隐藏的系统性真相特别要求:不满足于表面的系统性分析积极寻找意想不到的角度提供创造性的新视角创造"啊哈时刻"核心原则:每次对话都要带来新的惊喜让
- 谷歌 AI Agent 白皮书:2025 年,智能体时代已来
人工智能googleagent
谷歌在2024年底发布了AIAgent(AI智能体)白皮书,表明人工智能在商业中将扮演更积极和独立的角色的未来,并详细阐述了智能体的概念、架构、运作方式以及相关技术,为智能体的开发和应用提供了理论框架和实践指导。AI4AI社区为大家对白皮书内容进行了整理,简单概括回顾核心内容,欢迎点击文章底部“阅读原文”获取完整版白皮书。智能体时代已来人类擅长处理复杂的模式识别任务。然而,我们往往需要借助工具——
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现文章关键词:深度学习,入侵检测,网络安全,神经网络,特征提取,系统设计文章摘要:随着互联网的快速发展和网络攻击技术的不断演进,网络安全形势日益严峻。传统的入侵检测系统(IDS)面临着检测精度低、适应性差等问题,难以有效应对日益复杂的网络攻击。深度学习作为一种强大的机器学习技术,具有强大的特征学习和模式识别能力,为入侵检测技术带来了新的机遇。本文深入探讨了基于深度
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- [思考.AI]AI的能力边界?通用与专用模型平衡?人机协作模式?
俊哥V
AI由AI辅助创作人工智能AI
刚才列的三个问题AI的能力边界?适合做什么、不适合做什么?通用与专用模型平衡?结合特定应用场景的选择人机协作模式?人与AI的角色协调与配合...索性先丢给了AI,摘录其回复:以下是对三个核心问题的结构化分析,结合当前AI发展现状与搜索结果中的关键信息:一、AI能力边界的界定与适用场景适合领域:模式识别与数据处理医疗影像分析(如肿瘤检测)、金融风控(反欺诈模型)等场景中,AI凭借高精度数据处理能力显
- OpenCV及基本用法
m0_74823683
opencv人工智能计算机视觉
一.OpenCV介绍1.OpenCV的全称是OpenSourceComputerVisionLibrary,是一个开放源代码的计算机视觉库。OpenCV是最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国WillowGarage为OpenCV提供主要的支持。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,目前在工业界以及科研领域广泛采用。
- 人工智能如何辅助科研-ChatGPT4o作答
部分分式
人工智能
人工智能(AI)在科研领域的应用正在迅速扩展,并且以多种方式为科研人员提供了强大的支持。AI通过数据处理、模式识别、自动化实验设计、智能化分析等方式,提高了科研效率,加速了知识的发现和创新。以下是AI如何在各个科研阶段和领域中发挥辅助作用的详细探讨。1.文献分析与信息检索科研工作常常需要查阅大量的文献,AI可以通过高效的文献分析和信息检索,帮助科研人员迅速找到相关文献,节省时间。智能化文献搜索:传
- 模糊模式识别:从贴近度到分类决策的Matlab实践
青橘MATLAB学习
模糊数学模型分类matlab数据分析数学建模
模糊模式识别是模糊数学在现实问题中的核心应用之一,其核心思想是通过量化模糊集合之间的“相似性”或“贴近度”,实现对未知模式的分类与识别。本文将从贴近度的定义出发,详解海明贴近度、欧几里得贴近度、黎曼贴近度及格贴近度的计算方法,并结合最大隶属原则与择近原则,解析模糊模式识别的完整流程。一、贴近度的定义与分类1.1贴近度的数学定义贴近度(ProximityDegree)是衡量两个模糊集合相似性的指标。
- 告别前端状态管理噩梦:AI代码生成器如何简化你的工作
前端
前端开发,尤其是大型项目的开发,常常被复杂的AI写代码工具所困扰。状态管理,作为前端开发的核心难题之一,更是让无数开发者头疼不已。代码维护困难、数据流追踪不易、逻辑混乱等问题层出不穷,严重影响开发效率和项目质量。高效的前端状态管理至关重要,而智能化解决方案的出现,正为我们提供了一条新的出路。前端状态管理的智能模式识别:突破传统方案的局限传统的方案,例如Redux、Vuex等,虽然在一定程度上解决了
- 告别前端状态管理噩梦:AI代码生成器如何简化你的工作
前端
前端开发,尤其是大型项目的开发,常常被复杂的AI写代码工具所困扰。状态管理,作为前端开发的核心难题之一,更是让无数开发者头疼不已。代码维护困难、数据流追踪不易、逻辑混乱等问题层出不穷,严重影响开发效率和项目质量。高效的前端状态管理至关重要,而智能化解决方案的出现,正为我们提供了一条新的出路。前端状态管理的智能模式识别:突破传统方案的局限传统的方案,例如Redux、Vuex等,虽然在一定程度上解决了
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul