我们在上一篇博客中利用logistic回归做了二分类,这里我们继续利用logistic回归做多类别分类。
这里我们利用一种非常常见的情形作为例子,就是手写数字识别。
我们在这里用到的是课程提供的数据集,共有5000个数据,从0到9每个数字有500个数据组成,每个数据都是一张20*20像素的图,因此每张图具有400个像素点。数据集用一个矩阵表示,是5000*400的规模,下图是随机挑选了100张图进行显示
利用多个一对多(one-vs-all)logistic回归,为了使得训练更加有效,需要对其进行向量化,以避免进行循环(loop)操作。
在logistic回归中,代价函数是
矩阵相乘,有
在logistic回归中的梯度是下面的式子定义的
在上面的函数中加入正则化项
function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
%regularization
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
% efficiently vectorized. For example, consider the computation
%
% sigmoid(X * theta)
%
% Each row of the resulting matrix will contain the value of the
% prediction for that example. You can make use of this to vectorize
% the cost function and gradient computations.
%
% Hint: When computing the gradient of the regularized cost function,
% there're many possible vectorized solutions, but one solution
% looks like:
% grad = (unregularized gradient for logistic regression)
% temp = theta;
% temp(1) = 0; % because we don't add anything for j = 0
% grad = grad + YOUR_CODE_HERE (using the temp variable)
%
my = y.*(-1);
oy = 1.-y;
h = X*theta;
first = (1/m)*(my.*log(sigmoid(h)));
sec = (1/m)*oy.*log(1-sigmoid(h));
lterm = (lambda/(2*m)) * (theta.^2);
t= first-sec;
J1 = sum(t);
J2 = sum(lterm)-lterm(1);
J = J1+J2;
grad = (1/m)*(X'*(sigmoid(h)-y));
temp = grad(1);
grad = (1/m)*(X'*(sigmoid(h)-y))+(lambda/m)*theta;
grad(1) = temp;
% =============================================================
end
在具有N个特征,需要分为K类的问题中,需要求解的参数在矩阵空间 Θ∈RK×(n+1) Θ ∈ R K × ( n + 1 ) 中,其中 Θ Θ 的每一行对应一个logistic回归中的参数。因此这个过程可以用for循环对K类分别操作。在本例中K=10,N=400,所以 Θ Θ 是一个10*401的矩阵
MATLAB求解每一行的 θ θ 值,如下
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i
% Some useful variables
m = size(X, 1);
n = size(X, 2);
% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
initial_theta = zeros(n + 1, 1);
options = optimset('GradObj', 'on', 'MaxIter', 50);
for c = 1:num_labels
[theta] = ...
fmincg(@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
initial_theta, options);
all_theta(c,:)=theta(:);
end
% =========================================================================
end
fmincg函数和fminunc的作用是一样的,这里进行过优化。
将之前的数据按照计算出的 Θ Θ 进行计算,取其值最大的,认为是某类的概率最大的
function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
%are in the range 1..K, where K = size(all_theta, 1).
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
% for each example in the matrix X. Note that X contains the examples in
% rows. all_theta is a matrix where the i-th row is a trained logistic
% regression theta vector for the i-th class. You should set p to a vector
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
% for 4 examples)
m = size(X, 1);
num_labels = size(all_theta, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters (one-vs-all).
% You should set p to a vector of predictions (from 1 to
% num_labels).
%
% Hint: This code can be done all vectorized using the max function.
% In particular, the max function can also return the index of the
% max element, for more information see 'help max'. If your examples
% are in rows, then, you can use max(A, [], 2) to obtain the max
% for each row.
%
h = all_theta * X';
[temp,p] = max(h);
p = p';
% =========================================================================
end
得到预测的准确率是94.98%
我们可以找几个预测错的数字看一下,比如将第1564个数据的3识别成了2,我们看一下
在实现了多类别分类之后,我们先引入神经网络的概念,神经网络事实上就是在上面模型的基础上增加了隐藏层。下面就是我们对于手写数字识别建立了神经网络模型
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see 'help max'. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
%
%Z2 = Theta1*X';
%Z2 = [ones(1,m);Z2];
%Z3 = Theta2*sigmoid(Z2);
%h = sigmoid(Z3);
%[temp,p] = max(h);
%p = p';
z1 = X * Theta1';
a1 = sigmoid(z1);
a1 = [ones(m, 1) a1];
z2 = a1 * Theta2';
a2 = sigmoid(z2);
[val, p] = max(a2, [], 2);
% =========================================================================
end
比如第143号预测错误