leetcode 375 Guess Number Higher or Lower II

leetcode 375 原题描述

We are playing the Guess Game. The game is as follows:

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I'll tell you whether the number I picked is higher or lower.

However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:

n = 10, I pick 8.

First round:  You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round:  You guess 9, I tell you that it's lower. You pay $9.

Game over. 8 is the number I picked.

You end up paying $5 + $7 + $9 = $21.

Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.

是自己一直都不怎么会做的DP问题,看了好几个答案,才有点明白,先记录一下供日后翻看。

参照youtube上一位up主的思路(链接日后附上)。

假设n=5,即在1 2 3 4 5中猜,全局最好的局部最坏情况是什么(是不是很绕口)

一般一开始会想用二分查找,先猜3,再猜1或4,但其实这道题的情景下并不一定这样就能用最少的钱保证一定猜中。所以应该都考虑进去。

具体假设先猜1,2,3,4,5,这就是把所有情况都考虑进去,再对每一中情况取局部最坏情况,用max来表示,保证最终一定会猜中。最终取min(猜1,猜2,猜3,猜4,猜5)。

1:[2 3 4 5]

2: max([1], [3 4 5])

3: max([1 2], [4 5])

4: max([1 2 3], [5])

5: [1 2 3 4]

其实对每个局部的最差又可以进行内层的递归,看起来像是一个树的递归,在数据范围i-j之间用dfs(i,j)来计算,按照up主的高级说法是这样的树dfs问题可以转换为dp[i][j]问题,避免树出栈入栈,减少内存消耗。

dp问题的转移方程是

dp[i][j] = k + max(dp[i][k-1], max(dp[k+1][j]))

其中i-j代表一个子范围,k代表i到j之间的数,如同上面例子中的1,2,3,4,5

具体代码(Python)

class Solution(object):
    def getMoneyAmount(self, n):
        """
        :type n: int
        :rtype: int
        """
        dp = [[0]*(n+2) for i in range(n+2)]
        for length in range(2, n+1):
            for i in range(1, n-length+2):
                j = i+length-1
                dp[i][j] = float('inf')
                for k in range(i, j+1):
                    dp[i][j] = min(dp[i][j], k+max(dp[i][k-1],dp[k+1][j]))
        return dp[1][n]

 

你可能感兴趣的:(Leetcode)