推荐系统系列教程之十一:那些在Netflix Prize中大放异彩的推荐算法

 
   

   编者按:之前推出了《推荐系统系列教程》,反响不错,前面已经推出了十期,今天按约推出第十一期:那些在Netflix Prize中大放异彩的推荐算法。希望朋友们多点“在看”,多多转发,我会在“在看”数超过20后推出下一篇教程。

推荐系统系列教程之十一:那些在Netflix Prize中大放异彩的推荐算法_第1张图片
     早在前面几篇务虚的文章中,我们就聊过了推荐系统中的经典问题,其中有一类就是评分预测。
    不过摸着良心说,评分预测问题只是很典型,其实并不大众,毕竟在实 际的应用中,评分数据很难收集到,属于典型的精英问题;与之相对的另一类问题行为预测,才是平民级推荐问题,处处可见。
缘起 
    评分预测问题之所以“虽然小众却十分重要”,这一点得益于十多年前 Netflix Prize 的那一百万美元的悬赏效应。 
    公元2006年10月2号,对于很多人来说,这只是平凡了无新意的一天,但对于推荐系统从业者来说,这是不得了的一天,美国著名的光盘租赁商Netflix突然广发英雄帖,放下“豪”言,这个就是土豪的“豪”,凡是能在他们现有推荐系统基础上,把均方根误差降低 10% 的大侠,可以瓜分100万美元。消息一出,群贤毕至。 
    Netflix放出的比赛数据,正是评分数据,推荐系统的问题模式也是评分预测,也就是为什么说,评价标准是均方根误差了。 
    这一评分预测问题在一百万美元的加持下,催生出无数推荐算法横空出世,其中最为著名的就是一系列矩阵分解模型,而最最著名的模型就是 SVD 以及其各种变体。这些模型后来也经受了时间检验,在实际应用中得到了不同程度的开枝散叶。 
    今天我们就来详细聊一下矩阵分解,SVD及其最有名的变种算法。 
矩阵分解
为什么要矩阵分解 
    聪明的你也许会问,好好的近邻模型,一会儿基于用户,一会儿基于物品,感 觉也能很酷炫地解决问题呀,为什么还要来矩阵分解呢?
    刨除不这么做就拿不到那一百万的不重要因素之外,矩阵分解确实可以解决一些近邻模型无法解决的问题。
    我们都是读书人,从不在背后说模型的坏话,这里可以非常坦诚地说几点近邻模型的问题:
     1、物品之间存在相关性,信息量不 随着向量维度增加而线性增加;
    2、矩阵元素稀疏,计算结果不稳定,增减一个向量维度,导致近邻结果差异很大的情况存在。 
    上述两个问题,在矩阵分解中可以得到解决。矩阵分解,直观上说来简单,就 是把原来的大矩阵,近似分解成两个小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵。
    具体说来就是,假设 户物品的评分矩阵 A 是 m 乘以 n 维,即一共有 m 个用户,n 个物品。我们选一个很小的数 k,这个 k 比 m 和 n 都小很多,比如小两个数 级这样,通过一套算法得到两个矩阵 U 和 V,矩阵 U 的维度是 m 乘以 k,矩阵 V 的维度是 n 乘以 k。 
    这两个矩阵有什么要求呢?要求就是通过面 这个公式复原矩阵 A:
640?wx_fmt=png
    类似这样的计算过程就是矩阵分解,还有一个更常见的名字叫做 SVD;但是,SVD 和矩阵分解不能划等号,因为除了SVD 还有一些别的矩阵分解 法。 
1 基础的 SVD 算法
    值得一说的是,SVD 全称奇异值分解,属于线性代数的知识 ; 然而在推荐算法中实际上使用的并不是正统的奇异值分解,而是一个伪奇异值分解(具体伪在哪里是本文的重点)。 
    今天我们介绍的 SVD 是由 Netflix Prize 中取得骄人成绩的 Yehuda Koren 提出的矩阵分解推荐算法。 
    按照顺序,首先介绍基础的 SVD 算法,然后是考虑偏置信息,接着是超越评分矩阵增加多种输入,最后是增加时间因素。好,一个一个来。 
    前面已经从直观上大致说了矩阵分解是怎么回事,这里再从物理意义上解释一 遍。矩阵分解,就是把用户和物品都映射到一个 k 维空间中,这个 k 维空间不是我们直接看得到的,也不一定具有非常好的可解释性,每一个维度也没有名字,所以常常叫做隐因子,代表藏在直观的矩阵数据下面的。
    每一个物品都得到一个向 q,每一个用户也得到一个向量p。对于物品,与它对应的向量q 中的元素,有正有负,代表着这个物品背后暗藏的一些用户关注的因素。 
    对于用户,与它对应的向量 p 中的元素,也有正有负,代表这个用户在若干因素上的偏好。物品被关注的因素,和用户偏好的因素,它们的数量和意义是一致的,就是我们在矩阵分解之处人为指定的 k。 
    举个例子,用户 u 的向量是 pu,物品 i 的向量是 qi,那么,要计算物品 i 推荐给用户 u 的推荐分数,直接计算点积即可:
640?wx_fmt=png
 
    看上去很简单,难在哪呢?难在如何得到每一个用户,每一个物品的 k 维向量。 这是一个机器学习问题。按照机器学习框架,一般就是考虑两个核心要素:
     1、损失函数;
    2、优化算法。
    SVD 的损失函数是这样定义的: 
640?wx_fmt=png
    理解 SVD 的参数学习过程并不是必须的,如果你不是算法工程师的话不必深究这个过程。 
    这个损失 函数由两部分构成,加号前一部分控制着模型的偏差,加号后一部分控制着模型的方差。
    前一部分就是: 用分解后的矩阵预测分数,要和实际的用户评分之间误差越小 越好。
    后一部分就是:得到的隐因子向量要越简单越好,以控制这个模型的方差,换句话说,让它在真正执行推荐任务时发挥要稳定。这部分的概念对应机器学习 中的过拟合,有兴趣可以深入了解。
    整个 SVD 的学习过程就是: 
     1、准备好用户物品的评分矩阵,每一条评分数据看做一条训练样本;
    2、给分解后的 U 矩阵和 V 矩阵随机初始化元素值;
    3、U 和 V 计算预测后的分数;
    4、计算预测的分数和实际的分数误差;
    5、按照梯度下降的方向更新 U 和 V 中的元素值;
    6、重复步骤 3 到 5,直到达到停止条件。
    过程中提到的梯度下降是优化算法的一种,想深入了解可以参见任何一本机器学习的专著。
    得到分解后的矩阵之后,实质上就是得到了每个用户和每个物品的隐因子向量, 拿着这个向量再做推荐计算就简单了,哪里不会点哪里,意思就是拿着物品和用户两个向量,计算点积就是推荐分数了。
2 增加偏置信息 
    到现在,你已经知道基础的 SVD 是怎么回事了。现在来多考虑一下实际情况,试想一下:有一些用户会给出偏高的评分,比如标准宽松的用户;有一些物品也会收到偏高的评分,比如一些目标观众为铁粉的电影,甚至有可能整个平台的全局评分就偏高。 
    所以,原装的 SVD 就有了第一个变种:把偏置信息抽出来的 SVD。
    一个用户给一个物品的评分会由四部分相加:
640?wx_fmt=png
    从左至右分别代表:全局平均分、物品的评分偏置、用户评分的偏置、用户和 物品之间的兴趣偏好。 
    针对前面三项偏置分数,我们在这里举个例子,假如一个电影评分网站全局平均分是 3 分,《肖申克的救赎》的平均分比全局平均分要高1 分。 
    你是一个对电影非常严格的 ,你一般打分比平均分都要低 0.5,所以前三项从左到右分别就是 3,1,-0.5。如果简单的就靠这三项,也可以给计算出一个你会给《肖申克的救赎》打的分数,就是 3.5。 
    增加了偏置信息的 SVD 模型目标函数稍有改变:
640?wx_fmt=png
    和基本的 SVD 相比,要想学习两个参数:用户偏置和物品偏置。学习的算法还是一样的。 
3 增加历史行为 
    探讨完增加偏置信息的 SVD 后,接着你再思考一个问题:有的用户评分比较 少。事实上这很常见,相比沉默的大多数,主动点评电影或者美食的用户是少 数。 
    换句话说, 显式反馈比隐式反馈少,那么能不能利用隐式反馈来弥补这一点呢? 另外,再考虑多一点,对于用户的个人属性,比如性别等,是不是也可以加入到模型中来弥补冷启动的不足呢?
    是的,都是可以的,在 SVD 中结合用户的隐式反馈行为和属性,这套模型叫 做 SVD++。   
    先说隐式反馈怎么加入,方法是:除了假设评分矩阵中的物品有一个隐因向量外,用户有过行为的物品集合也都有一个隐因子向量,维度是一样的。把用 户操作过的物品隐因子向量加起来,用来表达用户的兴趣偏好。
    类似的,用户属性,全都转换成 0-1 型的特征后,对每 个特征也假设都存在一个同样维度的隐因子向量,一个用户的所有属性对应的隐因子向量相加,也代表了他的一些偏好。 
    综合两者,SVD++ 的 标函数中,只需要把推荐分数预测部分稍作修改,原来的用户向量那部分增加了隐式反馈向量和用户属性向量:
推荐系统系列教程之十一:那些在Netflix Prize中大放异彩的推荐算法_第2张图片
    学习算法依然不变,只是要学习的参数多了两个向量:x 和 y。一个是隐式反馈的物品向量,另一个用户属性的向量。 
    这样一来,在用户没有评分时,也可以用他的隐式反馈和属性做出一定的预测。
4 考虑时间因素 
    截止到目前,我们还没有正视过一个人性: 人是善变的 。这个是一个广义的评 价,我们在进步也是在变化,今天的我们和十年前的我们很可能不一样了。这是常态,因此,在 SVD 中考虑时间因素也变得顺理成章。
    在 SVD 中考虑时间因素,有几种做法:
    1、对评分按照时间加权,让久远的评分更趋近平均值;
    2、对评分时间划分区间,不同的时间区间内分别学习出隐因子向量,使用时按照区间使用对应的隐因子向量来计算;
    3、对特殊的期间,如节日、周末等训练对应的隐因子向量。 
总结 
    至此,我们介绍了在 Netflix Prize 比赛中最为出众的模型:SVD 及其一些典型的改进。改进方案分别是: 
     1、考虑偏置信息;
    2、考虑隐式反馈和用户属性;
    3、考虑时间因素。
    其实 Netflix Prize比赛上诞生了很多其他优秀的算法,或者把一些已有的算法应 用得到很好的效果,比如受限玻尔兹曼机用来融合多个模型,这个我会在后面的专栏文章中专门再讲。 

 

附: 最后再唠叨两句,本系列教程全部免费,但希望大家每期都不要落下,这样可成体系,也希望各位粉丝朋友多多转发,并在看完后点个“在看”,以示鼓励。 我会在文章“在看”数超过20后推送出下一篇的教程。 希望大家都有所收获。
「 更多干货,更多收获 」

640?wx_fmt=gif

推荐系统教程之十:协同过滤中的相似度计算方法有哪些?

推荐系统教程之九:解密“看了又看”和“买了又买”(Item-based)

推荐系统教程之八:人以群分,你是什么人就看到什么世界

推荐系统教程之七:超越标签的内容推荐系统

推荐系统教程之六:从文本到用户画像有多远

推荐系统教程之五:画鬼容易画人难,用户画像的“能”与“不能”

推荐系统教程之四:这些你必须具备的思维模式

推荐系统教程之三:个性化推荐系统那些绕不开的经典话题

推荐系统教程之二:你真的需要搭建个性化推荐系统吗?

推荐系统教程之一:用知识去对抗技术不平等

【推荐算法】基于用户和产品的协同过滤推荐算法

如何搭建一套个性化推荐系统

从零开始搭建创业公司后台技术栈

今日头条推荐系统原理

feed流设计:那些谋杀你时间的APP

关注我们



智能推荐

个性化推荐技术与产品社区

长按并识别关注

640?wx_fmt=png

一个「在看」,一段时光!?

你可能感兴趣的:(推荐系统系列教程之十一:那些在Netflix Prize中大放异彩的推荐算法)