《今天面试了吗》-Redis
今天,我不自量力的面试了某大厂的java开发岗位,迎面走来一位风尘仆仆的中年男子,手里拿着屏幕还亮着的mac,他冲着我礼貌的笑了笑,然后说了句“不好意思,让你久等了”,然后示意我坐下,说:“我们开始吧。看了你的简历,觉得你对redis应该掌握的不错,我们今天就来讨论下redis......”。我想:“来就来,兵来将挡水来土掩”。
Redis是什么
五种数据类型
数据类型应用场景总结
类型 |
简介 |
特性 |
场景 |
string(字符串) |
二进制安全 |
可以包含任何数据,比如jpg图片或者序列化对象 |
--- |
Hash(字典) |
键值对集合,即编程语言中的map类型 |
适合存储对象,并且可以像数据库中的update一个属性一样只修改某一项属性值 |
存储、读取、修改用户属性 |
List(列表) |
链表(双向链表) |
增删快,提供了操作某一元素的api |
最新消息排行;消息队列 |
set(集合) |
hash表实现,元素不重复 |
添加、删除、查找的复杂度都是O(1),提供了求交集、并集、差集的操作 |
共同好友;利用唯一性,统计访问网站的所有Ip |
sorted set(有序集合) |
将set中的元素增加一个权重参数score,元素按score有序排列 |
数据插入集合时,已经进行了天然排序 |
排行榜;带权重的消息队列 |
Redis缓存
复制代码
server:
port: 8082
servlet:
session:
timeout: 30ms
spring:
cache:
type: redis
redis:
host: 127.0.0.1
port: 6379
password:
# redis默认情况下有16个分片,这里配置具体使用的分片,默认为0
database: 0
lettuce:
pool:
# 连接池最大连接数(使用负数表示没有限制),默认8
max-active: 100
复制代码
创建实体类User.java
public class User implements Serializable{
private static final long serialVersionUID = 662692455422902539L;
private Integer id;
private String name;
private Integer age;
public User() {
}
public User(Integer id, String name, Integer age) {
this.id = id;
this.name = name;
this.age = age;
}
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Integer getAge() {
return age;
}
public void setAge(Integer age) {
this.age = age;
}
@Override
public String toString() {
return "User{" +
"id=" + id +
", name='" + name + '\'' +
", age=" + age +
'}';
}
}
复制代码
RedisTemplate的使用方式
默认情况下的模板只能支持RedisTemplate
@Configuration
@AutoConfigureAfter(RedisAutoConfiguration.class)
public class RedisCacheConfig {
@Bean
public RedisTemplate
RedisTemplate
template.setKeySerializer(new StringRedisSerializer());
template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
template.setConnectionFactory(connectionFactory);
return template;
}
}
复制代码
测试类
@RestController
@RequestMapping("/user")
public class UserController {
public static Logger logger = LogManager.getLogger(UserController.class);
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Autowired
private RedisTemplate
@RequestMapping("/test")
public void test() {
redisCacheTemplate.opsForValue().set("userkey", new User(1, "张三", 25));
User user = (User) redisCacheTemplate.opsForValue().get("userkey");
logger.info("当前获取对象:{}", user.toString());
}
复制代码
然后在浏览器访问,观察后台日志 http://localhost:8082/user/test
使用spring cache集成redis
spring cache具备很好的灵活性,不仅能够使用SPEL(spring expression language)来定义缓存的key和各种condition,还提供了开箱即用的缓存临时存储方案,也支持和主流的专业缓存如EhCache、Redis、Guava的集成。
定义接口UserService.java
public interface UserService {
User save(User user);
void delete(int id);
User get(Integer id);
}
复制代码
接口实现类UserServiceImpl.java
@Service
public class UserServiceImpl implements UserService{
public static Logger logger = LogManager.getLogger(UserServiceImpl.class);
private static Map
static {
userMap.put(1, new User(1, "肖战", 25));
userMap.put(2, new User(2, "王一博", 26));
userMap.put(3, new User(3, "杨紫", 24));
}
@CachePut(value ="user", key = "#user.id")
@Override
public User save(User user) {
userMap.put(user.getId(), user);
logger.info("进入save方法,当前存储对象:{}", user.toString());
return user;
}
@CacheEvict(value="user", key = "#id")
@Override
public void delete(int id) {
userMap.remove(id);
logger.info("进入delete方法,删除成功");
}
@Cacheable(value = "user", key = "#id")
@Override
public User get(Integer id) {
logger.info("进入get方法,当前获取对象:{}", userMap.get(id)==null?null:userMap.get(id).toString());
return userMap.get(id);
}
}
复制代码
为了方便演示数据库的操作,这里直接定义了一个Map
测试类:UserController
@RestController
@RequestMapping("/user")
public class UserController {
public static Logger logger = LogManager.getLogger(UserController.class);
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Autowired
private RedisTemplate
@Autowired
private UserService userService;
@RequestMapping("/test")
public void test() {
redisCacheTemplate.opsForValue().set("userkey", new User(1, "张三", 25));
User user = (User) redisCacheTemplate.opsForValue().get("userkey");
logger.info("当前获取对象:{}", user.toString());
}
@RequestMapping("/add")
public void add() {
User user = userService.save(new User(4, "李现", 30));
logger.info("添加的用户信息:{}",user.toString());
}
@RequestMapping("/delete")
public void delete() {
userService.delete(4);
}
@RequestMapping("/get/{id}")
public void get(@PathVariable("id") String idStr) throws Exception{
if (StringUtils.isBlank(idStr)) {
throw new Exception("id为空");
}
Integer id = Integer.parseInt(idStr);
User user = userService.get(id);
logger.info("获取的用户信息:{}",user.toString());
}
}
复制代码
用缓存要注意,启动类要加上一个注解开启缓存
@SpringBootApplication(exclude=DataSourceAutoConfiguration.class)
@EnableCaching
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}
复制代码
1、先调用添加接口:http://localhost:8082/user/add
2、再调用查询接口,查询id=4的用户信息:
可以看出,这里已经从缓存中获取数据了,因为上一步add方法已经把id=4的用户数据放入了redis缓存 3、调用删除方法,删除id=4的用户信息,同时清除缓存
4、再次调用查询接口,查询id=4的用户信息:
没有了缓存,所以进入了get方法,从userMap中获取。
缓存注解
1、@Cacheable 根据方法的请求参数对其结果进行缓存
2、@CachePut
根据方法的请求参数对其结果进行缓存,和@Cacheable不同的是,它每次都会触发真实方法的调用。参数描述见上。
3、@CacheEvict
根据条件对缓存进行清空
缓存问题
setRedis(key, value, time+Math.random()*10000);
复制代码
如果Redis是集群部署,将热点数据均匀分布在不同的Redis库中也能避免全部失效。或者设置热点数据永不过期,有更新操作就更新缓存就好了(比如运维更新了首页商品,那你刷下缓存就好了,不要设置过期时间),电商首页的数据也可以用这个操作,保险。
public static String getData(String key) throws InterruptedException {
//从Redis查询数据
String result = getDataByKV(key);
//参数校验
if (StringUtils.isBlank(result)) {
try {
//获得锁
if (reenLock.tryLock()) {
//去数据库查询
result = getDataByDB(key);
//校验
if (StringUtils.isNotBlank(result)) {
//插进缓存
setDataToKV(key, result);
}
} else {
//睡一会再拿
Thread.sleep(100L);
result = getData(key);
}
} finally {
//释放锁
reenLock.unlock();
}
}
return result;
}
复制代码
Redis为何这么快
Redis和Memcached的区别
淘汰策略
策略 |
描述 |
volatile-lru |
从已设置过期时间的KV集中优先对最近最少使用(less recently used)的数据淘汰 |
volitile-ttl |
从已设置过期时间的KV集中优先对剩余时间短(time to live)的数据淘汰 |
volitile-random |
从已设置过期时间的KV集中随机选择数据淘汰 |
allkeys-lru |
从所有KV集中优先对最近最少使用(less recently used)的数据淘汰 |
allKeys-random |
从所有KV集中随机选择数据淘汰 |
noeviction |
不淘汰策略,若超过最大内存,返回错误信息 |
补充一下:Redis4.0加入了LFU(least frequency use)淘汰策略,包括volatile-lfu和allkeys-lfu,通过统计访问频率,将访问频率最少,即最不经常使用的KV淘汰。
持久化
appendfsync yes
appendfsync always #每次有数据修改发生时都会写入AOF文件。
appendfsync everysec #每秒钟同步一次,该策略为AOF的缺省策略。
复制代码
AOF可以做到全程持久化,只需要在配置中开启 appendonly yes。这样redis每执行一个修改数据的命令,都会把它添加到AOF文件中,当redis重启时,将会读取AOF文件进行重放,恢复到redis关闭前的最后时刻。
主从复制
上面是psync的执行流程:
从节点发送psync[runId][offset]命令,主节点有三种响应:
(1)FULLRESYNC:第一次连接,进行全量复制
(2)CONTINUE:进行部分复制
(3)ERR:不支持psync命令,进行全量复制
上面是全量复制的流程。主要有以下几步:
1、从节点发送psync ? -1命令(因为第一次发送,不知道主节点的runId,所以为?,因为是第一次复制,所以offset=-1)。
2、主节点发现从节点是第一次复制,返回FULLRESYNC {runId} {offset},runId是主节点的runId,offset是主节点目前的offset。
3、从节点接收主节点信息后,保存到info中。
4、主节点在发送FULLRESYNC后,启动bgsave命令,生成RDB文件(数据持久化)。
5、主节点发送RDB文件给从节点。到从节点加载数据完成这段期间主节点的写命令放入缓冲区。
6、从节点清理自己的数据库数据。
7、从节点加载RDB文件,将数据保存到自己的数据库中。
8、如果从节点开启了AOF,从节点会异步重写AOF文件。
关于部分复制有以下几点说明:
1、部分复制主要是Redis针对全量复制的过高开销做出的一种优化措施,使用psync[runId][offset]命令实现。当从节点正在复制主节点时,如果出现网络闪断或者命令丢失等异常情况时,从节点会向主节点要求补发丢失的命令数据,主节点的复制积压缓冲区将这部分数据直接发送给从节点,这样就可以保持主从节点复制的一致性。补发的这部分数据一般远远小于全量数据。
2、主从连接中断期间主节点依然响应命令,但因复制连接中断命令无法发送给从节点,不过主节点内的复制积压缓冲区依然可以保存最近一段时间的写命令数据。
3、当主从连接恢复后,由于从节点之前保存了自身已复制的偏移量和主节点的运行ID。因此会把它们当做psync参数发送给主节点,要求进行部分复制。
4、主节点接收到psync命令后首先核对参数runId是否与自身一致,如果一致,说明之前复制的是当前主节点;之后根据参数offset在复制积压缓冲区中查找,如果offset之后的数据存在,则对从节点发送+COUTINUE命令,表示可以进行部分复制。因为缓冲区大小固定,若发生缓冲溢出,则进行全量复制。
5、主节点根据偏移量把复制积压缓冲区里的数据发送给从节点,保证主从复制进入正常状态。
哨兵
1、每个Sentinel节点都需要定期执行以下任务:每个Sentinel以每秒一次的频率,向它所知的主服务器、从服务器以及其他的Sentinel实例发送一个PING命令。(如上图)
2、如果一个实例距离最后一次有效回复PING命令的时间超过down-after-milliseconds所指定的值,那么这个实例会被Sentinel标记为主观下线。(如上图)
3、如果一个主服务器被标记为主观下线,那么正在监视这个服务器的所有Sentinel节点,要以每秒一次的频率确认主服务器的确进入了主观下线状态。
4、如果一个主服务器被标记为主观下线,并且有足够数量的Sentinel(至少要达到配置文件指定的数量)在指定的时间范围内同意这一判断,那么这个主服务器被标记为客观下线。
5、一般情况下,每个Sentinel会以每10秒一次的频率向它已知的所有主服务器和从服务器发送INFO命令,当一个主服务器被标记为客观下线时,Sentinel向下线主服务器的所有从服务器发送INFO命令的频率,会从10秒一次改为每秒一次。
6、Sentinel和其他Sentinel协商客观下线的主节点的状态,如果处于SDOWN状态,则投票自动选出新的主节点,将剩余从节点指向新的主节点进行数据复制。
7、当没有足够数量的Sentinel同意主服务器下线时,主服务器的客观下线状态就会被移除。当主服务器重新向Sentinel的PING命令返回有效回复时,主服务器的主观下线状态就会被移除。
总结
本文在一次面试的过程中讲述了Redis是什么,Redis的特点和功能,Redis缓存的使用,Redis为什么能这么快,Redis缓存的淘汰策略,持久化的两种方式,Redis高可用部分的主从复制和哨兵的基本原理。只要功夫深,铁杵磨成针,平时准备好,面试不用慌。虽然面试不一定是这样问的,但万变不离其“宗”。(笔者觉得这种问答形式的博客很不错,可读性强而且读后记的比较深刻)
此文是转载的,为了自己学习!谢谢坚持就是胜利大佬!!!!!!
来源:掘金
作者:坚持就是胜利
链接:juejin.im/post/5dccf260f265da0bf66b626d