Hadoop伪分布式运行模式启动HDFS并运行MapReduce程序

伪分布式运行模式

启动HDFS并运行MapReduce程序

  1. 分析

(1)配置集群

(2)启动、测试集群增、删、查

(3)执行WordCount案例

  1. 执行步骤

(1)配置集群

(a)配置:hadoop-env.sh

Linux系统中获取JDK的安装路径:

[atguigu@ hadoop101 ~]# echo $JAVA_HOME

/opt/module/jdk1.8.0_144

修改JAVA_HOME 路径:

export JAVA_HOME=/opt/module/jdk1.8.0_144

(b)配置:core-site.xml

fs.defaultFS

hdfs://hadoop101:9000

hadoop.tmp.dir

/opt/module/hadoop-2.7.2/data/tmp

(c)配置:hdfs-site.xml

dfs.replication

1

(2)启动集群

(a)格式化NameNode(第一次启动时格式化,以后就不要总格式化)

[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs namenode -format

(b)启动NameNode

[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode

(c)启动DataNode

[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode

(3)查看集群

(a)查看是否启动成功

[atguigu@hadoop101 hadoop-2.7.2]$ jps

13586 NameNode

13668 DataNode

13786 Jps

注意:jps是JDK中的命令,不是Linux命令。不安装JDK不能使用jps

(b)web端查看HDFS文件系统

http://hadoop101:50070/dfshealth.html#tab-overview

注意:如果不能查看,看如下帖子处理

http://www.cnblogs.com/zlslch/p/6604189.html

(c)查看产生的Log日志

说明:在企业中遇到Bug时,经常根据日志提示信息去分析问题、解决Bug。

当前目录:/opt/module/hadoop-2.7.2/logs

[atguigu@hadoop101 logs]$ ls

hadoop-atguigu-datanode-hadoop.atguigu.com.log

hadoop-atguigu-datanode-hadoop.atguigu.com.out

hadoop-atguigu-namenode-hadoop.atguigu.com.log

hadoop-atguigu-namenode-hadoop.atguigu.com.out

SecurityAuth-root.audit

[atguigu@hadoop101 logs]# cat hadoop-atguigu-datanode-hadoop101.log

(d)思考:为什么不能一直格式化NameNode,格式化NameNode,要注意什么?

[atguigu@hadoop101 hadoop-2.7.2]$ cd data/tmp/dfs/name/current/

[atguigu@hadoop101 current]$ cat VERSION

clusterID=CID-f0330a58-36fa-4a2a-a65f-2688269b5837

[atguigu@hadoop101 hadoop-2.7.2]$ cd data/tmp/dfs/data/current/

clusterID=CID-f0330a58-36fa-4a2a-a65f-2688269b5837

注意:格式化NameNode,会产生新的集群id,导致NameNode和DataNode的集群id不一致,集群找不到已往数据。所以,格式NameNode时,一定要先删除data数据和log日志,然后再格式化NameNode。

(4)操作集群

(a)在HDFS文件系统上创建一个input文件夹

[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs dfs -mkdir -p /user/atguigu/input

(b)将测试文件内容上传到文件系统上

[atguigu@hadoop101 hadoop-2.7.2]$bin/hdfs dfs -put wcinput/wc.input

/user/atguigu/input/

(c)查看上传的文件是否正确

[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs dfs -ls /user/atguigu/input/

[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs dfs -cat /user/atguigu/ input/wc.input

(d)运行MapReduce程序

[atguigu@hadoop101 hadoop-2.7.2]$ bin/hadoop jar

share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/atguigu/input/ /user/atguigu/output

(e)查看输出结果

命令行查看:

[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs dfs -cat /user/atguigu/output/*

浏览器查看,如图2-34所示

图2-34 查看output文件

(f)将测试文件内容下载到本地

[atguigu@hadoop101 hadoop-2.7.2]$ hdfs dfs -get /user/atguigu/output/part-r-00000 ./wcoutput/

(g)删除输出结果

[atguigu@hadoop101 hadoop-2.7.2]$ hdfs dfs -rm -r /user/atguigu/output

你可能感兴趣的:(大数据)