- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- **深度融合未来——DI-Fusion:开启在线三维重建新篇章**
余靖年Veronica
深度融合未来——DI-Fusion:开启在线三维重建新篇章在三维世界探索的前沿,一项名为DI-Fusion的技术正悄然掀起一波科技浪潮。由清华大学的JiahuiHuang、Shi-ShengHuang等人共同研发,这项创新成果已在CVPR2021上大放异彩,它的出现标志着在线隐式三维重构领域的重大突破。项目介绍重塑三维视觉新纪元DI-Fusion,又称为深度融合,是一项基于RGB-D流数据的新型在
- Unique3D:开启单张图片三维重建新篇章
余靖年Veronica
Unique3D:开启单张图片三维重建新篇章Unique3DOfficialimplementationofUnique3D:High-QualityandEfficient3DMeshGenerationfromaSingleImage项目地址:https://gitcode.com/gh_mirrors/un/Unique3D在当今高速发展的科技领域中,三维重建技术正以惊人的速度改变着我们的视
- unity3d 大地图接壤_多人紧密交互场景下的多视角人体动态三维重建方法与流程...
weixin_39947908
unity3d大地图接壤
本发明属于计算机视觉和图形学领域,具体讲,涉及人体关键点检测、追踪和人体三维模型重建方法。背景技术:在计算机视觉和计算机图形学中,无标记人体运动捕捉已经成为一个热门并且具有挑战性的热点问题,其主要任务是通过跟踪视频中移动对象的运动来恢复动态时间一致的3D形状。最近十年以来单人运动捕捉方法取得了巨大的进步,然而当前的方法需要对相机进行设置或处于一个受控的工作室环境中,并且依赖于良好的图像分割技术。在
- 通俗易懂学nerf——初识nerf
四个字
通俗易懂学nerf人工智能自动驾驶python
nerf,听起来像是一个神秘的魔法词汇,但它其实是一种前沿且超酷的技术!它是能让你从二维世界“跃升”到三维空间的神奇技术。想象一下,你手里有一张平面的照片,上面的风景、建筑都是扁平的,仿佛缺少了生命力。但有了NERF三维重建,这一切都变得鲜活起来!它就像是个超级魔术师,轻轻一挥,那张平面的照片就变成了立体的三维模型,仿佛你可以走进去,感受那里的空气、触摸那里的物体。nerf是怎么做到的呢?其实它的
- NeRF——基于神经辐射场的三维场景重建和理解
知来者逆
数字人NeRF3D重建3d计算机视觉人工智能
概述三维重建是一种将物理世界中的实体转换为数字模型的计算机技术。其基本概念是通过对物理世界中的物体或场景进行扫描或拍摄,并使用计算机算法将其转换为三维数字模型。抽象意义上的三维模型指的是:形状和外观的组合,并且可以渲染成不同视角下真实感强烈的RGB图像。三维重建技术可以应用于许多领域,如建筑设计、游戏开发、虚拟现实等。通过三维重建技术,可以快速、准确地获取物体的几何形状、纹理、颜色等信息,从而实现
- 【视觉三维重建】【论文笔记】Deblurring 3D Gaussian Splatting
CS_Zero
论文阅读
去模糊的3D高斯泼溅,看Demo比3D高斯更加精细,对场景物体细节的还原度更高,[官网](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)背景技术Volumetricrendering-basednerualfields:NeRF.Rasterizationrendering:3D-GS.Rasterization比vol
- 如果对类似汽车这种单体进行建模,围绕一圈拍摄,普通的手机或者相机拍摄的照片有足够的重叠度就能建模吗?不需要专业的设备可以吗?
大势智慧
汽车3d一问一答实景三维三维建模三维重建
答:可以建模。提供了完备的单体照片,在不需专业设备的情况下也可实现建模。重建大师是一款专为超大规模实景三维数据生产而设计的集群并行处理软件,输入倾斜照片,激光点云,POS信息及像控点,输出高精度彩色网格模型,可一键完成空三、自动建模和LOD构建。下载地址:武汉大势智慧-实景三维-云端建模-新型基础设施#实景三维##三维重建##重建大师##三维模型##三维建模##一问一答#
- 草图三维模型生成论文阅读整理
fisherisfish
论文阅读
论文终于接收啦!给草图研究做个收尾就去投实习!仅为个人整理,如有错误,欢迎指出!因为想给论文找创新点,所以需要大量阅读论文,部分论文会精读到实现的步骤,部分论文就记录一下思路。目前基于大模型和深度学习的三维重建任务可以简单分类为text23D,也就是文本控制转三维模型,一般使用语言模型提取文本的特征,然后去噪概率扩散模型生成多视角图像,最后再用NeRF进行三维重建,例如Dreamfusion、Ma
- 基于激光点云操作可视化界面
云杂项
python3d创业创新
基于激光点云操作可视化界面使用说明书第一章系统概述基于激光点云操作可视化界面是进行点云文件综合处理的GUI界面,包括计算点云文件中心点、点云文件体素化、点云文件的三维重建和点云文件网格化等模块。主要功能是快速的对点云文件进行读入,展示和处理,通过GUI界面对点云文件进行数据的提取和展示。该GUI界面可以对点云文件的加工和处理的各个环节进行快速计算、统一展示和有效保存,为之后对3D点云文件底层快速处
- PyQt Python 使用 VTK ITK 进行分割 三维重建 医学图像可视化系统 流程
恋恋西风
PythonpyqtpythonVTKITK
效果:重建流程:1.输入可以读取DICOM,niinrrd等数据设置读取器以加载DICOM图像系列。使用itk::GDCMImageIO作为DICOM图像的输入输出接口。使用itk::GDCMSeriesFileNames获取指定路径下的所有DICOM文件名。使用itk::ImageSeriesReader读取DICOM图像序列,并将其作为3D图像存储。2.分割创建itk::ThresholdIm
- 三维重建 阈值分割 3D可视化 医学图像分割 CT图像分割及重建系统 可视化编程技术及应用
恋恋西风
VTK毕业设计和论文qt三维重建VTKITK图像分割
一、概述此系统实现了常见的VTK四视图,实现了很好的CT图像分割,可以用于骨骼,头部,肺部,脂肪等分割,,并且通过三维重建实现可视化。使用了第三方库VTK,ITK实现分割和生不重建。窗口分为(横断面)、冠状面、矢状面,和3D窗口;包含了体绘制和面绘制;效果:CT分割重建二、开发环境操作系统:Windows10:工具:Qt5.12.4+VisualStudio2017,使用开源库:VTK-8.1IT
- Depth Anything放入MVS中?
cashap27149
算法
这是DepthAnything的深度值depth,这个depth通过depth=depth_anything(image)求得。但想要把这个深度值depth嵌入到三维重建算法框架中,并不是一件容易得事情,拿OpenMVS举例,下图是OpenMVS输出深度图的函数。OpenMVS的深度值保存在depthMap中,我们来看看depthMap的具体结构,可以看到OpenMVS使用TImage模板类实例化
- 3DCaricShop: A Dataset and A Baseline Method for Single-view 3D Caricature Face Reconstruction
理想很丰满,现实很骨感
#单视图三维人脸重建计算机视觉深度学习神经网络
目录1.文章概述2.相关工作2.1关于数据集2.2关于单视图三维重建3.本文核心方法3.13DCaricShop数据集3.2提出的baseline方法进行三维重建3.2.1概述3.2.2流程1.参数化建模(PCA)2.隐式三维重建3.3D关键点预测4.关键点引导的模型匹配3.2.3VC-GCN(视图协同图卷积网络)1.初始化2.图卷积4.最终效果1.文章概述3DCaricShop指的是文章提出的一
- KinectFusion论文品读
自信侠
KinectFusion:Real-timedensesurfacemappingandtracking论文链接:https://ieeexplore.ieee.org/document/6162880参考视频:KinectFusion和ElasticFusion三维重建方法-付兴银https://www.bilibili.com/video/av6060335/参考博文:https://www.
- [图形学/三维重建]大白话推导-摄像机内参(Intrinsic)、外参、3D物体坐标变换成2D
Bartender_Jill
Graphics图形学笔记3d图形渲染算法游戏引擎ue5动画
文章目录前言一、基础知识了解1.13D场景to2D图像1.2矩阵运算表达1.3摄像机坐标系原点设置二、内参矩阵三、外参总结前言参考资料https://www.bilibili.com/video/BV1Ae41127Yf?p=2一、基础知识了解在日常生活中,光线与物体界面的交互,构成了我们眼里的图像。但是为什么只有眼睛有成像,而像墙壁/桌子等这些平面上不会成像呢?比如我举着一张纸在半空中,周围环境
- 图像处理入门:OpenCV的基础用法解析
kadog
ByGPT图像处理opencv人工智能计算机视觉
图像处理入门:OpenCV的基础用法解析引言OpenCV的初步了解深入理解OpenCV:计算机视觉的开源解决方案什么是OpenCV?OpenCV的主要功能1.图像处理2.图像分析3.结构分析和形状描述4.动态分析5.三维重建6.机器学习7.目标检测OpenCV的应用场景OpenCV的安装基本图像操作图像的读取与显示图像的基本信息图像的保存图像处理技巧图像转换边缘检测特征检测与匹配引言OpenCV(
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 三维重建衡量指标记录
我宿孤栈
人工智能#视觉相关深度学习目标检测计算机视觉
1、完整性比率CompletenessRati(CR)完整性比率完整性比率是用于评估三维重建质量的指标之一,它衡量了重建结果中包含的真实物体表面或点云的百分比。完整性比率通常是通过比较重建结果中的点云或三维模型与真实或标准点云或模型之间的重叠来计算的。具体计算步骤可能如下:定义真实模型和重建模型:首先,需要有一个真实的或标准的三维模型或点云,以及一个重建的三维模型或点云(由三维重建技术生成)。计算
- 第十一篇【传奇开心果系列】Python的OpenCV技术点案例示例:三维重建
传奇开心果编程
Python库OpenCV技术点案例示例短博文python计算机视觉opencv
传奇开心果短博文系列系列短博文目录Python的OpenCV技术点案例示例系列短博文目录一、前言二、OpenCV三维重建介绍三、基于区域的SGBM示例代码四、BM(BlockMatching)算法介绍和示例代码五、基于能量最小化的GC(GraphCut)算法介绍和示例代码六、相机标定介绍和示例代码七、特征提取与匹配介绍和示例代码八、三角测量介绍和示例代码九、通过特征匹配和RANSAC(Random
- OpenCV学习记录——特征匹配
KAIs32
树莓派——OpenCVopencv学习人工智能嵌入式硬件计算机视觉
文章目录前言一、暴力匹配步骤分析二、代码分析前言特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析暴力匹配是一种简单直接的匹配方法,它遍历所有特征点的描述符,并计算它们之间的距离。然后根据距离进行排序,选择距离最短的特征点作为匹配点。虽然暴力匹配方法简单,但在
- 科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)
JANGHIGH
科普类无人驾驶自动驾驶
科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)在立体视觉领域,有许多立体视觉软件和工具可以帮助工程师进行基线设计、系统测试和优化。以下是一些常用的立体视觉软件和工具:Meshroom:这是一个基于AliceVision摄影测量计算机视觉框架的免费开源三维重建软件。Meshroom可以处理大规模的图像数据集,进行立体视觉重建。OpenMVG(OpenMultipleViewGeom
- 三维重建开源函数库或者工具
冰清-小魔鱼
遥感GIS计算机视觉目标检测人工智能
三维重建使用摄影测量、计算机视觉技术,利用立体视觉恢复真实相机姿态,获取现实物体的三维信息,并进行虚拟三维场景重现。1、OpenDroneMapODM是一个基于航空影像的三维重建集成工具箱,利用多幅航空影像恢复相机姿态和3D场景,可以生产点云、三维贴图模型、正射影像、数字表面模型、数字高程模型等,提供Web接口,支持CUDA加速,基础函数库使用OpenSfM,OpenMVS,PDAL,Entwin
- 三维重建方法3D gaussian splatting与NeRF的区别和异同
Soumes
3d计算机视觉人工智能深度学习机器学习
最近学习了一些三维重建相关的内容,目前比较主要的重建流派就是3DGS以及NeRF,NeRF作为2020年发布的文章轰动一时,影响深远,有很多NeRFbased的相关工作在这些年涌现。3DGS作为2023年的newtalkofthetown,其在保证合成质量的情况下能够以数倍乃至数十倍的速度碾压许多NeRFbased的方法,因此得到了广泛关注。这篇文章从几个角度比较了NeRF(最初的版本)和3Dga
- 【3DGS】从新视角合成到3D Gaussian Splatting
UnderTurrets
图形渲染计算机视觉3d
文章目录引言:什么是新视角合成任务定义一般步骤NeRF的做法NeRF的三维重建NeRF的渲染3DGS的三维重建从一组图片估计点云高斯点云模型球谐函数参数优化损失函数和协方差矩阵的优化高斯点的数量控制(AdaptiveDensityControl)新的问题3DGS的渲染:快速可微光栅化3DGS的限制引言:什么是新视角合成任务定义新视角合成(NovelViewSynthesis),属于计算机视觉领域,
- 三维重建经典论文合集汇总
深蓝学院
人工智能三维重建视觉
三维重建涉及计算机视觉、图形学等多门知识,是一套非常复杂的系统。经典三维重建系统包括整个pipeline从相机标定、基础矩阵与本质矩阵估计、特征匹配到运动恢复结构(SFM),从SFM到稠密点云重建、表面重建、纹理贴图。其中,熟悉SFM的工程师已经是行业内的佼佼者,能掌握稠密点云重建与表面重建的工程师更是凤毛麟角。图1经典三维重建系统pipeline三维重建是当下计算机视觉的一个研究热点,虽然从业者
- 【三维重建】双目立体视觉
Patrick star`
人工智能
通过极几何可以求得极线,现在我们需要将左边的图变成右边的平行视图。所有的极线都经过极点(e/e'),如果极点位于无穷远处,那所有的极线都平行。(极几何的基础知识可以参考这篇文章:【三维重建】对极几何-CSDN博客)平行视图中,可以利用视差就得深度,视差越小深度越深。如何得到平行视图呢?
- 【三维重建】三角化
Patrick star`
数码相机
三角化要解决的问题是:已知两个相机的内参K、K'、相机之间的旋转平移矩阵R、t以及匹配点p、p',如何求得P点的三维坐标?线性解法C++代码实现:https://github.com/ldx-star/Triangulation.git
- 【三维重建】运动恢复结构(SfM)
Patrick star`
算法
运动恢复结构是通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像机参数。欧式结构恢复(内参已知,外参未知)欧式结构恢复问题:已知:1、n个三维点在m张图像中的对应点的像素坐标2、相机内参求解:1、n个三维点坐标2、m个摄像机的外参数R、T通过极几何我们知道本质矩阵和基础矩阵【三维重建】对极几何-CSDN博客求得了基础矩阵F,知道相机内参,就能求得本质矩阵E核心问题就在于如何从
- 人体三维重建(六)——虚拟试衣方案
计算机视觉AI
获得准确的三维人体模型通常是虚拟试衣的第一步,随后还需要合身且具有真实感的三维服装模拟。其中涉及的是人体与服装之间的交互技术以及服装建模技术(暂不考虑真实感渲染)。如图1所示。图1虚拟试衣的相关技术本次将关注一个虚拟试衣领域的热点问题,即如何高效复用现有的三维服装进行自动化服装生成、编辑或者是将其试穿到不同的三维人体身上进行服装的个性化定制。将现有工作分为基于几何优化的方法与基于数据驱动的方法,并
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http