最优二叉树实际运用:赫夫曼编码(压缩与解压)

目录

    • 1.定义节点类
    • 2.定义Map,StringBuilder类型 全局变量
    • 3.压缩
    • 4.解压
    • 5.测试方法

1.定义节点类

class Node1 implements Comparable<Node1> {
    Byte data;
    int weight;
    Node1 left;
    Node1 right;

    public Node1(Byte data, int weight) {
        this.weight = weight;
        this.data = data;
    }

    @Override
    public int compareTo(Node1 o) {
        return this.weight - o.weight;
    }

    @Override
    public String toString() {
        return "Node1{" +
                "data=" + data +
                ", weight=" + weight +
                '}';
    }

    public void preOrder() {
        System.out.println(this);
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }
}

2.定义Map,StringBuilder类型 全局变量

  1. 将赫夫曼编码表存放在 Map 形式
    生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
  2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
    static Map<Byte, String> huffmanCodes = new HashMap<>();
    static StringBuilder stringBuilder = new StringBuilder();

3.压缩

	//统计
    private static List<Node1> getNodes(byte[] bytes) {
        ArrayList<Node1> nodes = new ArrayList<>();
        Map<Byte, Integer> counts = new HashMap<>();
        for (byte b : bytes) {
            Integer count = counts.get(b);
            if (count == null) {
                counts.put(b, 1);
            } else {
                counts.put(b, count + 1);
            }
        }

        for (Map.Entry<Byte, Integer> entry : counts.entrySet()) {
            nodes.add(new Node1(entry.getKey(), entry.getValue()));
        }
        return nodes;
//List 形式 [Node1[date=97 ,weight = 5], Node1[]date=32,weight = 9]......]
    }
    
	//可以通过List 创建对应的赫夫曼树
    private static Node1 createHuffmanTree(List<Node1> nodes) {
        while (nodes.size() > 1) {
            Collections.sort(nodes);
            Node1 leftNode = nodes.get(0);
            Node1 rightNode = nodes.get(1);
            Node1 parent = new Node1(null, leftNode.weight + rightNode.weight);
            parent.left = leftNode;
            parent.right = rightNode;
            nodes.remove(leftNode);
            nodes.remove(rightNode);
            nodes.add(parent);
        }
        return nodes.get(0);
    }

	//前序遍历的方法
    private static void preOrder(Node1 root) {
        if (root != null) {
            root.preOrder();
        } else {
            System.out.println("HuffmanTree is null");
        }
    }
    
	//将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
    private static void getCodes(Node1 node, String code, StringBuilder stringBuilder) {
        StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
        stringBuilder2.append(code);
        if (node != null) {
            if (node.data == null) {
                getCodes(node.left, "0", stringBuilder2);
                getCodes(node.right, "1", stringBuilder2);
            } else {
                huffmanCodes.put(node.data, stringBuilder2.toString());
            }
        }
    }

	//为了调用方便,我们重载 getCodes
    private static Map<Byte, String> getCodes(Node1 root) {
        if (root == null) {
            return null;
        }
        getCodes(root.left, "0", stringBuilder);
        getCodes(root.right, "1", stringBuilder);
        return huffmanCodes;
    }

	//将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
	/**
	 * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();
	 * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"
	 * => 对应的 byte[] huffmanCodeBytes  ,即 8位对应一个 byte,放入到 huffmanCodeBytes
	 * huffmanCodeBytes[0] =  10101000(补码) => byte  [推导  10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]
	 * huffmanCodeBytes[1] = -88
	 */
    private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
        StringBuilder stringBuilder = new StringBuilder();
        for (byte b : bytes) {
            stringBuilder.append(huffmanCodes.get(b));
        }

        int len = (stringBuilder.length() + 7) / 8;
        byte[] huffmanCodeBytes = new byte[len];
        int index = 0;
        for (int i = 0; i < stringBuilder.length(); i += 8) {
            String strByte;
            if (i + 8 > stringBuilder.length()) {
                strByte = stringBuilder.substring(i);
            } else {
                strByte = stringBuilder.substring(i, i + 8);
            }
            huffmanCodeBytes[index] = (byte) Integer.parseInt(strByte, 2);
            index++;
        }
        return huffmanCodeBytes;
    }
    
	//将前面的方法封装起来
    private static byte[] huffmanZip(byte[] bytes){
        List<Node1> nodes = getNodes(bytes);
        Node1 huffmanTreeRoot = createHuffmanTree(nodes);
        Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
        byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
        return huffmanCodeBytes;
    }
    
    public static void zipFile(String srcFile,String dstFile){
	   FileInputStream fis = null;
	   FileOutputStream fos = null;
	   ObjectOutputStream oos = null;
	   try {
	       fis = new FileInputStream(srcFile);
	       byte[] b = new byte[fis.available()];
	       fis.read(b);//读进b数组中
	       byte[] huffmanBytes = huffmanZip(b);
	       oos = new ObjectOutputStream(new FileOutputStream(dstFile));
	       oos.writeObject(huffmanBytes);
	       oos.writeObject(huffmanCodes);
	   } catch (IOException e) {
	       e.printStackTrace();
	   } finally {
	       try {
	           fis.close();
	           fos.close();
	           oos.close();
	       } catch (IOException e) {
	           e.printStackTrace();
	       }
	
	   }
	}

4.解压

完成数据的解压思路:

  1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]
    重写先转成 赫夫曼编码对应的二进制的字符串 “1010100010111…”
  2. 赫夫曼编码对应的二进制的字符串 “1010100010111…” ==> 对照 赫夫曼编码
	//将一个byte 转成一个二进制的字符串,可以参考二进制的原码,反码,补码
    private static String byteToBitString(boolean flag,byte b){
        int temp = b;
        if(flag){//如果是正数补高位
            temp |= 256; //按位与256  1 0000 0000  | 0000 0001 => 1 0000 0001
        }
        String str = Integer.toBinaryString(temp);//返回temp对应的二进制的补码
        if(flag){
            return str.substring(str.length() - 8);
        }else{
            return str;
        }
    }

	//完成对压缩数据的解码
    private static byte[] decode(Map<Byte,String> huffmanCodes,byte[] huffmanBytes){
        StringBuilder stringBuilder = new StringBuilder();
        for (int i = 0; i < huffmanBytes.length; i++) {
            byte b = huffmanBytes[i];
            boolean flag = (i == huffmanBytes.length - 1);
            stringBuilder.append(byteToBitString(!flag, b));
        }
        Map<String, Byte> map = new HashMap<>();
        for (Map.Entry<Byte, String> entry : huffmanCodes.entrySet()) {
            map.put(entry.getValue(), entry.getKey());
        }

        List<Byte> list = new ArrayList<>();
        for (int j = 0; j < stringBuilder.length(); ) {
            int count = 1;
            boolean flag1 = true;
            Byte b =null;

            while(flag1){
                String key = stringBuilder.substring(j, j + count);
                b = map.get(key);
                if(b == null){
                    count++;
                }else{
                    flag1 = false;
                }
            }
            list.add(b);
            j += count;
        }
        byte[] b = new byte[list.size()];
        for (int i = 0; i < b.length; i++) {
            b[i] = list.get(i);
        }
        return b;
    }

    public static void unZipFile(String zipFile, String dstFile)  {
        FileInputStream fis = null;
        ObjectInputStream ois = null;
        OutputStream os = null;
        try {
            fis = new FileInputStream(zipFile);
            ois = new ObjectInputStream(fis);
            byte[] huffmanBytes = (byte[])ois.readObject();
            Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject();
            byte[] bytes = decode(huffmanCodes, huffmanBytes);
            os = new FileOutputStream(dstFile);
            os.write(bytes);
        } catch (IOException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } finally {
            try {
                fis.close();
                ois.close();
                os.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }

5.测试方法

    public static void main(String[] args) {
        //测试压缩文件
		String srcFile = "d://Uninstall.xml";
		String dstFile = "d://Uninstall.zip";

		zipFile(srcFile, dstFile);
		System.out.println("压缩成功");


        //测试解压文件
//        String zipFile = "d://Uninstall.zip";
//        String dstFile = "d://Uninstall2.xml";
//        unZipFile(zipFile, dstFile);
//        System.out.println("解压成功");
    }

你可能感兴趣的:(算法)