什么是hard negative mining

最近一直在看关于CNN的目标检测和跟踪的文章,在这中间会经常看到hard negative mining这个名词,把这个大概解释一下:

假设给你一堆包含一个或多个人物的图片,并且每一个人都给你一个bounding box做标记,如果要训练一个分类器去做分类的话,你的分类器需要既包含正训练样本(人)和负训练样本(背景)。

你通过观察bounding box去创建一个有用的正训练样本,那么怎么做才能创建一个有用的负训练样本呢?

一个很好的方式就是去在开始时随机创建一堆的bounding box候选框,并且不能与你的正样本有任何的重叠,把这些未与正样本重叠的新的bounding box作为你的负样本。

好了,这样你的正负样本都有了,可以训练可以用的分类器了,你用滑动窗口在你的训练图片上进行运行,但是你会发现你的分类器并不是很好用,分类的效果并不是很好,因为它会抛出一堆的错误的正样本(当检测到人时实际上却并不是实际的人),这就问题来了,你训练了一个用于分类的分类器,然而这个分类器却并不能达到你想要的效果,那么应该怎么办呢?

这个时候就要用的hard negative了,hard negative就是当你得到错误的检测patch时,会明确的从这个patch中创建一个负样本,并把这个负样本添加到你的训练集中去。当你重新训练你的分类器后,分类器会表现的更好,并且不会像之前那样产生多的错误的正样本。


你可能感兴趣的:(深度学习)