赫夫曼树(Huffman Tree),又称最优二叉树,是一类带权路径长度最短的树。假设有n个权值{w1,w2,...,wn},如果构造一棵有n个叶子节点的二叉树,而这n个叶子节点的权值是{w1,w2,...,wn},则所构造出的带权路径长度最小的二叉树就被称为赫夫曼树。
这里补充下树的带权路径长度的概念。树的带权路径长度指树中所有叶子节点到根节点的路径长度与该叶子节点权值的乘积之和,如果在一棵二叉树中共有n个叶子节点,用Wi表示第i个叶子节点的权值,Li表示第i个也叶子节点到根节点的路径长度,则该二叉树的带权路径长度 WPL=W1*L1 + W2*L2 + ... Wn*Ln。
根据节点的个数以及权值的不同,赫夫曼树的形状也各不相同,赫夫曼树具有如下特性:
/*
赫夫曼二叉树的存储结构,它也是一种二叉树结构,
这种存储结构既适合表示树,也适合表示森林。
*/
typedef struct Node
{
int weight; //权值
int parent; //父节点的序号,为-1的是根节点
int lchild, rchild; //左右孩子节点的序号,为-1的是叶子节点
}HTNode, *HuffmanTree; //用来存储赫夫曼树中的所有节点
/*
从叶子结点开始遍历二叉树直到根结点,根结点为HT[2n-1],且HT[2n-1].parent=-1;
各叶子结点为HT[0]、HT[1]...HT[n-1]。
关键步骤是求出各个叶子结点的路径长度,用此路径长度*此结点的权值就是
此结点带权路径长度,最后将各个叶子结点的带权路径长度加起来即可。
*/
int countWPL1(HuffmanTree HT, int n)
{
int i,countRoads,WPL=0;
/*
由creat_huffmanTree()函数可知,HT[0]、HT[1]...HT[n-1]存放的就是各个叶子结点,
所以挨个求叶子结点的带权路径长度即可
*/
for (i = 0; i < n; i++)
{
int father = HT[i].parent; //当前节点的父节点
countRoads = 0;//置当前路径长度为0
//从叶子节点遍历赫夫曼树直到根节点
while (father != -1)
{
countRoads++;
father = HT[father].parent;
}
WPL += countRoads * HT[i].weight;
}
return WPL;
}
/*
以下是从根结点开始遍历二叉树,求最小带权路径长度。关键步骤是求出各个叶子
结点的路径长度,用此路径长度*此结点的权值就是此结点带权路径长度,最后将
各个叶子结点的带权路径长度加起来即可。
*/
int countWPL2(HuffmanTree HT, int n)
{
int cur = 2 * n - 2; //当前遍历到的节点的序号,初始时为根节点序号
int countRoads=0, WPL=0;//countRoads保存叶子结点的路径长度
//构建好赫夫曼树后,把visit[]用来当做遍历树时每个节点的状态标志
//visit[cur]=0表明当前节点的左右孩子都还没有被遍历
//visit[cur]=1表示当前节点的左孩子已经被遍历过,右孩子尚未被遍历
//visit[cur]=2表示当前节点的左右孩子均被遍历过
int visit[maxSize] = { 0 };//visit[]是标注数组,初始化为0
//从根节点开始遍历,最后回到根节点结束
//当cur为根节点的parent时,退出循环
while (cur != -1)
{
//左右孩子均未被遍历,先向左遍历
if (visit[cur]==0)
{
visit[cur] = 1; //表明其左孩子已经被遍历过了
if (HT[cur].lchild != -1)
{ //如果当前节点不是叶子节点,则路径长度+1,并继续向左遍历
countRoads++;
cur = HT[cur].lchild;
}
else
{ //如果当前节点是叶子节点,则计算此结点的带权路径长度,并将其保存起来
WPL += countRoads * HT[cur].weight;
}
}
//左孩子已被遍历,开始向右遍历右孩子
else if (visit[cur]==1)
{
visit[cur] = 2;
if (HT[cur].rchild != -1)
{ //如果当前节点不是叶子节点,则记下编码,并继续向右遍历
countRoads++;
cur = HT[cur].rchild;
}
}
//左右孩子均已被遍历,退回到父节点,同时路径长度-1
else
{
visit[cur] = 0;
cur = HT[cur].parent;
--countRoads;
}
}
return WPL;
}
#include
using namespace std;
#pragma warning (disable:4996)
#define maxSize 100
/*
赫夫曼树的存储结构,它也是一种二叉树结构,
这种存储结构既适合表示树,也适合表示森林。
*/
typedef struct Node
{
int weight; //权值
int parent; //父节点的序号,为-1的是根节点
int lchild, rchild; //左右孩子节点的序号,为-1的是叶子节点
}HTNode, *HuffmanTree; //用来存储赫夫曼树中的所有节点
typedef char **HuffmanCode; //用来存储每个叶子节点的赫夫曼编码
HuffmanTree create_HuffmanTree(int *wet, int n);
void select_minium(HuffmanTree HT, int k, int &min1, int &min2);
int min(HuffmanTree HT, int k);
void HuffmanCoding1(HuffmanTree HT, HuffmanCode &HC, int n);
void HuffmanCoding2(HuffmanTree HT, HuffmanCode &HC, int n);
int countWPL1(HuffmanTree HT, int n);
int countWPL2(HuffmanTree HT, int n);
int main()
{
int w[] = { 5,4,3,2,1 };//用数组w存储各个权值
int n=5;//表示数组w中的个数
HuffmanCode HC = NULL;
HuffmanTree hTree = create_HuffmanTree(w, n);
int wpl1 = countWPL1(hTree, n);
printf("从叶子结点开始遍历二叉树求最小带权路径长度WPL=%d\n", wpl1);
int wpl2 = countWPL2(hTree, n);
printf("从根结点开始遍历二叉树求最小带权路径长度WPL=%d\n", wpl2);
printf("\n从叶子到根结点编码结果为:\n");
HuffmanCoding1(hTree, HC, n);
printf("\n从根结点到叶子结点编码结果为:\n");
HuffmanCoding2(hTree, HC, n);
system("pause");
return 0;
}
/*根据给定的n个权值构造一棵赫夫曼树,wet中存放n个权值*/
HuffmanTree create_HuffmanTree(int *wet, int n)
{
//一棵有n个叶子节点的赫夫曼树共有2n-1个节点
int total = 2 * n - 1;
HuffmanTree HT = (HuffmanTree)malloc(total * sizeof(HTNode));
if (!HT)
{
printf("HuffmanTree malloc faild!");
exit(-1);
}
int i;
//以下初始化序号全部用-1表示,
//这样在编码函数中进行循环判断parent或lchild或rchild的序号时,
//不会与HT数组中的任何一个下标混淆
//HT[0],HT[1]...HT[n-1]中存放需要编码的n个叶子节点
for (i = 0; i < n; i++)
{
HT[i].parent = -1;
HT[i].lchild = -1;
HT[i].rchild = -1;
HT[i].weight = *wet;
wet++;
}
//HT[n],HT[n+1]...HT[2n-2]中存放的是中间构造出的每棵二叉树的根节点
for (; i < total; i++)
{
HT[i].parent = -1;
HT[i].lchild = -1;
HT[i].rchild = -1;
HT[i].weight = 0;
}
int min1, min2; //用来保存每一轮选出的两个weight最小且parent为0的节点
//每一轮比较后选择出min1和min2构成一课二叉树,最后构成一棵赫夫曼树
for (i = n; i < total; i++)
{
select_minium(HT, i, min1, min2);
HT[min1].parent = i;
HT[min2].parent = i;
//这里左孩子和右孩子可以反过来,构成的也是一棵赫夫曼树,只是所得的编码不同
HT[i].lchild = min1;
HT[i].rchild = min2;
HT[i].weight = HT[min1].weight + HT[min2].weight;
}
return HT;
}
/*
从HT数组的前k个元素中选出weight最小且parent为-1的两个,分别将其序号保存在min1和min2中
*/
void select_minium(HuffmanTree HT, int k, int &min1, int &min2)
{
min1 = min(HT, k);
min2 = min(HT, k);
}
/*
从HT数组的前k个元素中选出weight最小且parent为-1的元素,并将该元素的序号返回
*/
int min(HuffmanTree HT, int k)
{
int i = 0;
int min; //用来存放weight最小且parent为-1的元素的序号
int min_weight; //用来存放weight最小且parent为-1的元素的weight值
//先将第一个parent为-1的元素的weight值赋给min_weight,留作以后比较用。
//注意,这里不能按照一般的做法,先直接将HT[0].weight赋给min_weight,
//因为如果HT[0].weight的值比较小,那么在第一次构造二叉树时就会被选走,
//而后续的每一轮选择最小权值构造二叉树的比较还是先用HT[0].weight的值来进行判断,
//这样又会再次将其选走,从而产生逻辑上的错误。
while (HT[i].parent != -1)
i++;
min_weight = HT[i].weight;
min = i;
//选出weight最小且parent为-1的元素,并将其序号赋给min
for (; i < k; i++)
{
if (HT[i].weight < min_weight && HT[i].parent == -1)
{
min_weight = HT[i].weight;
min = i;
}
}
//选出weight最小的元素后,将其parent置1,使得下一次比较时将其排除在外。
HT[min].parent = 1;
return min;
}
/*
从叶子节点到根节点逆向求赫夫曼树HT中n个叶子节点的赫夫曼编码,并保存在HC中
*/
void HuffmanCoding1(HuffmanTree HT, HuffmanCode &HC, int n)
{
//用来保存指向每个赫夫曼编码串的指针
HC = (HuffmanCode)malloc(n * sizeof(char *));
if (!HC)
{
printf("HuffmanCode malloc faild!");
exit(-1);
}
//临时空间,用来保存每次求得的赫夫曼编码串
//对于有n个叶子节点的赫夫曼树,各叶子节点的编码长度最长不超过n-1
//外加一个'\0'结束符,因此分配的数组长度最长为n即可
char *code = (char *)malloc(n * sizeof(char));
if (!code)
{
printf("code malloc faild!");
exit(-1);
}
code[n - 1] = '\0'; //编码结束符,亦是字符数组的结束标志
//求每个字符的赫夫曼编码
int i;
for (i = 0; i < n; i++)
{
int current = i; //定义当前访问的节点
int father = HT[i].parent; //当前节点的父节点
int start = n - 1; //每次编码的位置,初始为编码结束符的位置
//从叶子节点遍历赫夫曼树直到根节点
while (father != -1)
{
if (HT[father].lchild == current) //如果是左孩子,则编码为0
code[--start] = '0';
else //如果是右孩子,则编码为1
code[--start] = '1';
current = father;
father = HT[father].parent;
}
//为第i个字符的编码串分配存储空间
HC[i] = (char *)malloc((n - start) * sizeof(char));
if (!HC[i])
{
printf("HC[i] malloc faild!");
exit(-1);
}
//将编码串从code复制到HC
strcpy(HC[i], code + start);
}
for (int i = 0; i < n; ++i) {
printf("%s\n", HC[i]);
}
free(code); //释放保存编码串的临时空间
}
/*
从根节点到叶子节点无栈非递归遍历赫夫曼树HT,求其中n个叶子节点的赫夫曼编码,并保存在HC中
*/
void HuffmanCoding2(HuffmanTree HT, HuffmanCode &HC, int n)
{
//用来保存指向每个赫夫曼编码串的指针
HC = (HuffmanCode)malloc(n * sizeof(char *));
if (!HC)
{
printf("HuffmanCode malloc faild!");
exit(-1);
}
//临时空间,用来保存每次求得的赫夫曼编码串
//对于有n个叶子节点的赫夫曼树,各叶子节点的编码长度最长不超过n-1
//外加一个'\0'结束符,因此分配的数组长度最长为n即可
char *code = (char *)malloc(n * sizeof(char));
if (!code)
{
printf("code malloc faild!");
exit(-1);
}
int cur = 2 * n - 2; //当前遍历到的节点的序号,初始时为根节点序号
int code_len = 0; //定义编码的长度
//构建好赫夫曼树后,把weight用来当做遍历树时每个节点的状态标志
//weight=0表明当前节点的左右孩子都还没有被遍历
//weight=1表示当前节点的左孩子已经被遍历过,右孩子尚未被遍历
//weight=2表示当前节点的左右孩子均被遍历过
int i;
for (i = 0; i < cur + 1; i++)
{
HT[i].weight = 0;
}
//从根节点开始遍历,最后回到根节点结束
//当cur为根节点的parent时,退出循环
while (cur != -1)
{
//左右孩子均未被遍历,先向左遍历
if (HT[cur].weight == 0)
{
HT[cur].weight = 1; //表明其左孩子已经被遍历过了
if (HT[cur].lchild != -1)
{ //如果当前节点不是叶子节点,则记下编码,并继续向左遍历
code[code_len++] = '0';
cur = HT[cur].lchild;
}
else
{ //如果当前节点是叶子节点,则终止编码,并将其保存起来
code[code_len] = '\0';
HC[cur] = (char *)malloc((code_len + 1) * sizeof(char));
if (!HC[cur])
{
printf("HC[cur] malloc faild!");
exit(-1);
}
strcpy(HC[cur], code); //复制编码串
}
}
//左孩子已被遍历,开始向右遍历右孩子
else if (HT[cur].weight == 1)
{
HT[cur].weight = 2; //表明其左右孩子均被遍历过了
if (HT[cur].rchild != -1)
{ //如果当前节点不是叶子节点,则记下编码,并继续向右遍历
code[code_len++] = '1';
cur = HT[cur].rchild;
}
}
//左右孩子均已被遍历,退回到父节点,同时编码长度减1
else
{
HT[cur].weight = 0;
cur = HT[cur].parent;
--code_len;
}
}
for (int i = 0; i < n; ++i) {
printf("%s\n", HC[i]);
}
free(code);
}
/*
从叶子结点开始遍历二叉树直到根结点,根结点为HT[2n-1],且HT[2n-1].parent=-1;
各叶子结点为HT[0]、HT[1]...HT[n-1]。
关键步骤是求出各个叶子结点的路径长度,用此路径长度*此结点的权值就是
此结点带权路径长度,最后将各个叶子结点的带权路径长度加起来即可。
*/
int countWPL1(HuffmanTree HT, int n)
{
int i,countRoads,WPL=0;
/*
由creat_huffmanTree()函数可知,HT[0]、HT[1]...HT[n-1]存放的就是各个叶子结点,
所以挨个求叶子结点的带权路径长度即可
*/
for (i = 0; i < n; i++)
{
int father = HT[i].parent; //当前节点的父节点
countRoads = 0;//置当前路径长度为0
//从叶子节点遍历赫夫曼树直到根节点
while (father != -1)
{
countRoads++;
father = HT[father].parent;
}
WPL += countRoads * HT[i].weight;
}
return WPL;
}
/*
以下是从根结点开始遍历二叉树,求最小带权路径长度。关键步骤是求出各个叶子
结点的路径长度,用此路径长度*此结点的权值就是此结点带权路径长度,最后将
各个叶子结点的带权路径长度加起来即可。
*/
int countWPL2(HuffmanTree HT, int n)
{
int cur = 2 * n - 2; //当前遍历到的节点的序号,初始时为根节点序号
int countRoads=0, WPL=0;//countRoads保存叶子结点的路径长度
//构建好赫夫曼树后,把visit[]用来当做遍历树时每个节点的状态标志
//visit[cur]=0表明当前节点的左右孩子都还没有被遍历
//visit[cur]=1表示当前节点的左孩子已经被遍历过,右孩子尚未被遍历
//visit[cur]=2表示当前节点的左右孩子均被遍历过
int visit[maxSize] = { 0 };//visit[]是标注数组,初始化为0
//从根节点开始遍历,最后回到根节点结束
//当cur为根节点的parent时,退出循环
while (cur != -1)
{
//左右孩子均未被遍历,先向左遍历
if (visit[cur]==0)
{
visit[cur] = 1; //表明其左孩子已经被遍历过了
if (HT[cur].lchild != -1)
{ //如果当前节点不是叶子节点,则路径长度+1,并继续向左遍历
countRoads++;
cur = HT[cur].lchild;
}
else
{ //如果当前节点是叶子节点,则计算此结点的带权路径长度,并将其保存起来
WPL += countRoads * HT[cur].weight;
}
}
//左孩子已被遍历,开始向右遍历右孩子
else if (visit[cur]==1)
{
visit[cur] = 2;
if (HT[cur].rchild != -1)
{ //如果当前节点不是叶子节点,则记下编码,并继续向右遍历
countRoads++;
cur = HT[cur].rchild;
}
}
//左右孩子均已被遍历,退回到父节点,同时路径长度-1
else
{
visit[cur] = 0;
cur = HT[cur].parent;
--countRoads;
}
}
return WPL;
}
从叶子结点开始遍历二叉树求最小带权路径长度WPL=33
从根结点开始遍历二叉树求最小带权路径长度WPL=33
从叶子到根结点编码结果为:
11
10
00
011
010
从根结点到叶子结点编码结果为:
11
10
00
011
010
Press any key to continue . . .
有读者反应这个是有点问题的,其实只是huffman树的构建不同。树的形态不同是允许的,huffman编码不是唯一的,但WPL一定是唯一的。
因为1+2=3和3节点相等,第一个3应该放在右边,程序里面运行后是左边,所以输出的是那样的,加一个判断就好了。我现在没有时间去更新,等有空了更新一下。原理明白就行了。
其实哈夫曼树被设计出来主要用于压缩文件,不管放在右边还是左边都起到了压缩的目的,结果是一样的。
//对于这种方式构建huffman树,只需将上面的完整版代码更改两句
HuffmanTree create_HuffmanTree(int *wet, int n)
{ ...
...
HT[i].lchild = min1;
HT[i].rchild = min2;
...
...
}
改为:
HT[i].rchild = min1;
HT[i].lchild = min2;
/*把每次选出来权值最小的结点作在右孩子*/
从叶子结点开始遍历二叉树求最小带权路径长度WPL=33
从根结点开始遍历二叉树求最小带权路径长度WPL=33
从叶子到根结点编码结果为:
00
01
11
100
101
从根结点到叶子结点编码结果为:
00
01
11
100
101
Press any key to continue . . .
另外,以上是哈夫曼二叉树的构建及编码,提到哈夫曼树,不仅仅指哈夫曼二叉树,还有哈夫曼n叉树(n>=2)。
下图是哈夫曼三叉树的简单介绍:
以上内容大部分参考于此