一、STM32 ADC简介
STM32 拥有 1~3 个 ADC(STM32F101/102 系列只有 1 个 ADC),这些 ADC 可以独立使用, 也可以使用双重模式(提高采样率)。STM32 的 ADC 是 12 位逐次逼近型的模拟数字转换器。 它有 18 个通道,可测量 16 个外部和 2 个内部信号源。各通道的 A/D 转换可以单次、连续、扫 描或间断模式执行。ADC 的结果可以左对齐或右对齐方式存储在 16 位数据寄存器中。 模拟看 门狗特性允许应用程序检测输入电压是否超出用户定义的高/低阀值。
STM32F103 系列最少都拥有 2 个 ADC,我们选择的 STM32F103ZET 包含有 3 个 ADC。 STM32 的 ADC 最大的转换速率为 1Mhz,也就是转换时间为 1us(在 ADCCLK=14M,采样周期 为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。
STM32 将 ADC 的转换分为 2 个通道组:规则通道组和注入通道组。规则通道相当于你正 常运行的程序,而注入通道呢,就相当于中断。在你程序正常执行的时候,中断是可以打断你 的执行的。同这个类似,注入通道的转换可以打断规则通道的转换, 在注入通道被转换完成之 后,规则通道才得以继续转换。 STM32 其 ADC 的规则通道组最多包含 16 个转换,而注入通道组最多包含 4 个通道。
二、使用 ADC1 的通道 1 进行 AD 转换
这里需要说明一下,使用到的 库函数分布在 stm32f10x_adc.c 文件和 stm32f10x_adc.h 文件中。下面讲解其详细设置步骤:
1、开启 PA 口时钟和 ADC1 时钟,设置 PA1 为模拟输入:
我们先要使能 PORTA 的时钟和 ADC1 时钟,然后设置 PA1 为模拟输入。使能 GPIOA 和 ADC 时钟用 RCC_APB2PeriphClockCmd 函 数,设置 PA1 的输入方式,使用 GPIO_Init 函数即可。这里我们列出 STM32 的 ADC 通道与 GPIO 对应表:
2、复位 ADC1,同时设置 ADC1 分频因子。
分频因子要确保 ADC1 的时钟(ADCCLK) 不要超过 14Mhz, 这个我们设置分频因子位 6,
RCC_ADCCLKConfig(RCC_PCLK2_Div6);
ADC 时钟复位的方法是:
ADC_DeInit(ADC1);
3、初始化 ADC1 参数,设置 ADC1 的工作模式以及规则序列的相关信息
调用函数
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);
4、使能 ADC 并校准。
在设置完了以上信息后,我们就使能 AD 转换器,执行复位校准和 AD 校准,注意这两步 是必须的!不校准将导致结果很不准确。 使能指定的 ADC 的方法是:
ADC_Cmd(ADC1, ENABLE); //使能指定的 ADC1
执行复位校准的方法是:
ADC_ResetCalibration(ADC1);
执行 ADC 校准的方法是:
ADC_StartCalibration(ADC1); //开始指定 ADC1 的校准状态
记住,每次进行校准之后要等待校准结束。这里是通过获取校准状态来判断是否校准是否结束。
下面我们一一列出复位校准和 AD 校准的等待结束方法:
while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束
while(ADC_GetCalibrationStatus(ADC1)); //等待校 AD 准结束
5、读取 ADC 值。
设置规则序列通道以及采样周期的函数是:
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);
软件开启 ADC 转换的方法是:
ADC_SoftwareStartConvCmd(ADC1, ENABLE);//使能指定的 ADC1 的软件转换启动功能
开启转换之后,就可以获取转换 ADC 转换结果数据,方法是
ADC_GetConversionValue(ADC1);
同时在 AD 转换中,我们还要根据状态寄存器的标志位来获取 AD 转换的各个状态信息。库函 数获取 AD 转换的状态信息的函数是:
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)
三、代码展示
adc.c
//初始化 ADC
//这里我们仅以规则通道为例
//我们默认将开启通道 0~3
void Adc_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1 , ENABLE ); //使能 ADC1 通道时钟
RCC_ADCCLKConfig(RCC_PCLK2_Div6); //设置 ADC 分频因子 6 //72M/6=12,ADC 最大时间不能超过 14M //PA1 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin =GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;//模拟输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化 GPIOA.1
ADC_DeInit(ADC1); //复位 ADC1,将外设 ADC1 的全部寄存器重设为缺省值
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC 独立模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE; //单通道模式
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //单次转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;//转换由 //软件而不是外部触发启动
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC 数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目
ADC_Init(ADC1, &ADC_InitStructure); //根据指定的参数初始化外设 ADCx
ADC_Cmd(ADC1, ENABLE); //使能指定的 ADC1
ADC_ResetCalibration(ADC1); //开启复位校准
while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束
ADC_StartCalibration(ADC1); //开启 AD 校准
while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束
}
//获得 ADC 值
//ch:通道值 0~3
u16 Get_Adc(u8 ch)
{ //设置指定 ADC 的规则组通道,设置它们的转化顺序和采样时间
ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 ); //通道 1,规则采样顺序值为 1,采样时间为 239.5 周期
ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能软件转换功能
while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return
ADC_GetConversionValue(ADC1); //返回最近一次 ADC1 规则组的转换结果 }
u16 Get_Adc_Average(u8 ch,u8 times)
{ u32 temp_val=0; u8 t;
for(t=0;t
main.c
int main(void)
{
u16 adcx;
float temp;
delay_init(); //延时函数初始化
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置 NVIC 中断分组 2
uart_init(115200); //串口初始化波特率为 115200
LED_Init(); //LED 端口初始化
LCD_Init(); //LCD 初始化
Adc_Init(); //ADC 初始化
POINT_COLOR=RED; //设置字体为红色
LCD_ShowString(60,50,200,16,16,"WarShip STM32");
LCD_ShowString(60,70,200,16,16,"ADC TEST");
LCD_ShowString(60,90,200,16,16,"ATOM@ALIENTEK");
LCD_ShowString(30,110,200,16,16,"2015/1/14"); //显示提示信息
POINT_COLOR=BLUE; //设置字体为蓝色
LCD_ShowString(60,130,200,16,16,"ADC_CH0_VAL:");
LCD_ShowString(60,150,200,16,16,"ADC_CH0_VOL:0.000V");
while(1)
{
adcx=Get_Adc_Average(ADC_Channel_1,10);
LCD_ShowxNum(156,130,adcx,4,16,0);//显示 ADC 的值
temp=(float)adcx*(3.3/4096);
adcx=temp;
LCD_ShowxNum(156,150,adcx,1,16,0);//显示电压值
temp-=adcx;
temp*=1000;
LCD_ShowxNum(172,150,temp,3,16,0X80);
LED0=!LED0;
delay_ms(250);
}
}