- docker镜像报错ERROR: failed to solve: DeadlineExceeded:
柠檬编程工作室
Dockerdockereureka容器
--------------------1|#基于NVIDIACUDA镜像,确保GPU支持2|>>>FROMnvidia/cuda:12.6.2-cudnn-devel-ubuntu20.043|4|#设置工作目录--------------------ERROR:failedtosolve:DeadlineExceeded:DeadlineExceeded:DeadlineExceeded:nv
- 实验踩坑 flash_attn_2_cuda undifiend symol
崩溃李
linux
报错RuntimeError:Failedtoimporttransformers.models.llama.modeling_llamabecauseofthefollowingerror(lookuptoseeitstraceback):…/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.s
- LLaVA微调debug:ImportError: xxx/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol:
同屿Firmirin
大模型debug笔记linux运维服务器深度学习语言模型
完整报错信息:ImportError:/home/linjl/anaconda3/envs/sd/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so:undefinedsymbol:_ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_s
- 从Nvidia切换到华为云昇腾芯片的入门技巧
sunrise_ccx
华为云人工智能
Nvidia太贵,尝试使用国产的芯片做AI。等价命令Nvidia昇腾说明nvidia-sminpu-smiinfo查看机器上显卡信息npu-smiinfo-tusages-i查看显卡使用率CUDA_VISIBLE_DEVICESASCEND_RT_VISIBLE_DEVICES指定要使用的显卡【未完待续】
- Python&aconda系列:CUDA+Anaconda的安装以及 Conda实用命令
坦笑&&life
#pythonpythonconda开发语言
这里写目录标题一.深度学习环境配置:CUDA+Anaconda的安装3.1.1CUDA简介3.1.2查看电脑显卡型号是否支持CUDA的安装3.1.3查看电脑显卡的驱动版本3.1.4根据显卡驱动版本下载支持的CUDA版本3.1.5检查CUDA是否安装成功3.1.6安装Anaconda3.1.7检查Anaconda是否安装成功3.1.8配置Anaconda的安装包下载源二.Conda实用命令conda
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- Tesla V100驱动安装
郭宝才
linux服务器运维
确认操作系统kernel版本,参考链接:https://docs.nvidia.com/cuda/archive/12.2.0/cuda-installation-guide-linux/index.html安装依赖yuminstall-ygccgcc-c++rdma-coredkmselfutils-libelf-develntpyuminstall-ykernel-devel-$(uname-
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 花费上万元的 RTX4090,普通人真的需要它的性能吗?
显卡
众所周知,RTX4090是当之无愧的显卡界卡皇。但对于普通人来说,花费上万元甚至更多去拥有它,真的值得吗?01RTX4090的性能规格它拥有超多的CUDA核心,数量高达16384个。这就好比有一支庞大的计算大军,能够快速处理各种复杂的图形计算任务。无论是玩高画质的3A大作游戏,还是进行专业的图形设计、视频编辑等工作,都能轻松应对。再说说它的显存,容量达到了惊人的24GB。这就像一个巨大的仓库,可以
- Windows 下Mamba2 环境安装问题记录及解决方法(causal_conv1d=1.4.0,mamba_ssm=2.2.2)
yyywxk
#Python模块有关问题mambapythonwindowsmamba2
导航安装教程导航Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(初版)Linux下Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(重置版)Windows下Mamba的安装参看本人博客:Window下Mamba环境安装踩坑问题汇总及解决方法(无需绕过selective_scan_cuda)Linux下Vim安装问题参看本人博客:Li
- Linux 下 Vim 环境安装踩坑问题汇总及解决方法(重置版)
yyywxk
#Python模块有关问题linuxvimmamba
导航安装教程导航Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(初版)Linux下Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(重置版)Windows下Mamba的安装参看本人博客:Window下Mamba环境安装踩坑问题汇总及解决方法(无需绕过selective_scan_cuda)Linux下Vim安装问题参看本人博客:Li
- GPU 集群和分布式计算
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《GPU集群和分布式计算》关键词:GPU集群、分布式计算、CUDA、OpenACC、OpenMP、性能优化、故障处理、案例分析摘要:本文详细探讨了GPU集群和分布式计算的基本概念、架构、编程模型以及应用场景。通过剖析GPU集群在多个领域的实际应用,探讨了性能优化和故障处理的方法,并提供了若干案例以加深理解。文章旨在为读者提供一个全面而深入的GPU集群和分布式计算的知识框架。《GPU集群和分布式计算
- error: [Errno 2] No such file or directory: ‘:/usr/local/cuda-12.1/bin/nvcc‘: ‘:/usr/local/cuda-12.1
鲤鱼不懂
bugcuda
一背景最近在服务器使用cuda报错,昨天使用还可以,今日就出问题,在此记录解决方案。二报错信息error:[Errno2]Nosuchfileordirectory:':/usr/local/cuda-12.1/bin/nvcc':':/usr/local/cuda-12.1/bin/nvcc'三解决方案终端输入以下命令exportCUDA_HOME=/usr/local/cuda-12.1
- 【CUDA-BEVFusion】tool/build_trt_engine.sh 文件解读
old_power
计算机视觉计算机视觉深度学习
build_trt_engine.sh#configuretheenvironment.tool/environment.shif["$ConfigurationStatus"!="Success"];thenecho"Exitduetoconfigurefailure."exitfi#tensorrtversion#version=`trtexec|grep-m1TensorRT|sed-n"s
- 小土堆学习笔记10(利用GPU训练于模型验证)
干啥都是小小白
pytorch学习——小土堆学习笔记深度学习
1.利用GPU训练GPU可优化操作如下操作方法1方法2数据获取判断是否可以使用GPU,如果可以直接model.cuda()先设定device,用的时候直接model.to(“device”)损失函数1.1利用以前实战模型训练(经过完整测试最高到70%左右的正确率)实战模型如下:小土堆学习笔记5(sequential与小实战)-CSDN博客具体代码如下:classmymodel(Module):de
- 安装CUDA Cudnn Pytorch(GPU版本)步骤
学乐乐
pytorch人工智能python
一.先看自己的电脑NVIDIA支持CUDA版本是多少?1.打开NVIDIA控制面板2.点击帮助---系统信息--组件我的支持CUDA11.6二.再看支持Pytorch的CUDA版本三.打开CUDA官网下载CUDA11.6下载好后,安装选择自定义然后安装位置(先去F盘建个CUDA-manger文件夹然后在里面建个CUDA11.6文件夹再在里面建立CUDA1CUDA2这两个文件夹前两个位置选到CUDA
- 【环境安装】安装LLaMA-Factory
BoostingIsm
环境安装深度学习人工智能
【机器背景说明】Linux-Centos7;显卡驱动:DriverVersion:460.106.00;TeslaP40*2【目标环境说明】torch==1.13.1+cu116llamafactory==0.9.2.dev01.CUDA11.6软件安装CUDA11.6软件有两种安装方式,一个是直接安装到Pip环境中、一种是下载到本地安装1.1在Pip环境里直接安装(推荐)此方法优点:省事不需要通
- linux下jax-GPU安装
liu_zhaoda
深度学习-jaxlinuxpythonpytorch
安装命令详细内容可查看jax官方文档在已有cuda的情况下,先使用命令1,再使用命令2,即可完成安装命令1:linux下jax安装命令pipinstalljax[cpu]==0.3.25-fhttps://storage.googleapis.com/jax-releases/jax_releases.html将黑体部分,替换成想要的版本即可命令2:linux下jaxlibcuda安装命令pipi
- jax 和 jaxlib 的 cuda 版本安装
正经市民
linux人工智能pythonpip
笔者花费时间才在Ubuntu20.04适配上jax和jaxlib的cuda版本安装,以及chex版本。版本展示本人版本展示jax==0.4.27,jaxlib==0.4.27+cuda12.cudnn89,chex==0.1.86。安装过程cuda以及环境变量配置过程首先安装cuda12.4和cudnn8.9,给出链接:cuda:https://developer.nvidia.com/cuda-
- 全面解析NVIDIA显卡:从入门级到旗舰级显卡详解
花千树-010
大模型人工智能算法智能电视
在选择显卡时,了解不同显卡的性能和适用场景是非常重要的。无论你是预算有限的入门用户,还是追求极致性能的游戏玩家,亦或是专业的内容创作者和深度学习研究人员,NVIDIA都有适合你的显卡。本篇博文将详细列举NVIDIA显卡的各项配置,从低到高逐一整理,并给出适用的使用场景。入门级显卡NVIDIAGeForceGT1030CUDA核心数:384基础频率:1227MHz加速频率:1468MHz显存:2GB
- 从零开始的 AI Infra 学习之路
SSS不知-道
MLSys人工智能深度学习pytorch
从零开始的AIInfra学习之路文章目录从零开始的AIInfra学习之路一、概述二、AI算法应用2.1机器学习2.2深度学习2.3LLM三、AI开发体系3.1编程语言四、AI训练框架&推理引擎4.1PyTorch4.2llama.cpp4.3vLLM五、AI编译&计算架构5.1CUDA5.2CANN六、AI硬件&体系结构6.1INVIDIAGPU6.2AscendNPU一、概述AIInfra(AI
- ImportError: libnvinfer.so.8: cannot open shared object file: No such file or directory
kyle-fang
模型部署经验分享
安装完TensorRT后,导入报错ImportError:libcudnn.so.8:cannotopensharedobjectfile:Nosuchfileordirectory上面报错信息的意思主要是liblibcudnn.so.8这个文件找不到在网上查资料后知道了这个文件是在cudnn的安装包里的,那需要先安装cudnnNVIDIA官网下载cuDNN8.2.1CUDA11.x安装包并解压到
- Jetson显卡上运行Qwen2-1.5b模型时报错“RuntimeError triu_tril_cuda_template not implemented for ‘BFloat16‘”
wang151038606
python中bug人工智能pytorch人工智能python
Jetson显卡上运行Qwen2-1.5b模型时报错“RuntimeErrortriu_tril_cuda_templatenotimplementedfor‘BFloat16’”问题描述:CUDA_DEVICE="cuda:0"model_name_or_path='/qwen2-1.5b-instruct'Tokenizer=AutoTokenizer.from_pretrained(mode
- 深度学习(1)
浅忆へ梦微凉
深度学习人工智能深度学习学习方法python
一、torch的安装基于直接设备情况,选择合适的torch版本,有显卡的建议安装GPU版本,可以通过nvidia-smi命令来查看显卡驱动的版本,在官网中根据cuda版本,选择合适的版本号,下面是安装示例代码GPU:pipinstalltorch==2.5.0torchvision==0.20.0torchaudio==2.5.0--index-urlhttps://download.pytorc
- [python]通过whl文件安装torchvision和torchaudio及国内whl文件下载地址汇总
萌萌哒240
环境配置python开发语言
要通过.whl文件安装torchvision和torchaudio,你需要先确保你已经安装了与这些库兼容的PyTorch版本。以下是一个详细的步骤指南,帮助你通过.whl文件安装这些库。1.安装PyTorch首先,确保你已经安装了PyTorch。你可以从PyTorch的官方网站获取适合你系统的安装命令例如,如果你使用的是CUDA11.3和Python3.8,你可以使用以下命令安装PyTorch:p
- centos7安装cuda、dudnn、Nvidia驱动[最详细的教程和报错解决方案]
LensonYuan
自然语言处理深度学习自然语言处理数据挖掘机器学习深度学习
现在很多教程都没有覆盖全报错问题,本文几乎把所有问题都描述到位首先说下我电脑的环境:centos7x86-64:uname-r命令显示为3.10.0-1160.el7.x86_64;物理显卡为单卡2080ti;gcc通过yum安装,yuminstallgcc版本为4.8.5,同时会显示安装一些其他包,如glibc版本为2.17;安装准备以下为驱动和官网文件名一致,可到nvidia官网下载,选择历史
- 华为昇腾AI处理器,atc模型转换和推理过程,华为的CANN库对标的是NVIDIA的cuda,所以在华为昇腾AI处理器上安装了CANN后,就可以直接使用pytorch了,以及推理框架(参考学习)
鼾声鼾语
嵌入式硬件学习stm32python数据库
1,模型转换atc模型转换模型转换如图参考链接如下:https://toscode.mulanos.cn/ascend/samples/tree/master/inference/modelInference/sampleResnetQuickStart/cpp2,推理运行,这里需要注意用到了infer,有点类似的pytorch对模型的加载使用model=InferSession(0,model_
- 【vLLM 学习】安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM是一个Python库,包含预编译的C++和CUDA(12.1)二进制文件。依赖环境操作系统:LinuxPython:3.8-3.12GPU:计算能力7.0或更高(例如V100、T4、RTX20xx、A100、L
- 【安装环境】配置MMTracking环境
xuanyu22
安装环境机器学习神经网络深度学习python
版本v0.14.0安装torchnumpy的版本不能太高,否则后面安装时会发生冲突。先安装numpy,因为pytorch的安装会自动配置高版本numpy。condainstallnumpy=1.21.5mmtracking支持的torch版本有限,需要找到合适的condainstallpytorch==1.11.0torchvision==0.12.0cudatoolkit=10.2-cpytor
- 安装torch报错 raise ReadTimeoutError(self._pool, None, “Read timed out.“) pip._vendor.urllib3.exceptions
待磨的钝刨
pippytorch人工智能
文章目录1.配置cuda的torch环境时报错1.配置命令2.报错bug2.解决方法1.增加下载超时时间:2.尝试使用镜像源:3.检查网络连接:4.分次安装:5.重试安装:6.手动下载.whl文件安装1.配置cuda的torch环境时报错1.配置命令pipinstalltorch==2.0.1torchvision==0.15.2torchaudio==2.0.2--index-urlhttps:
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发