CF821A-Okabe and Future Gadget Laboratory

A. Okabe and Future Gadget Laboratory

time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Okabe needs to renovate the Future Gadget Laboratory after he tried doing some crazy experiments! The lab is represented as an n by n square grid of integers. A good lab is defined as a lab in which every number not equal to 1 can be expressed as the sum of a number in the same row and a number in the same column. In other words, for every x, y such that 1 ≤ x, y ≤ n and ax, y ≠ 1, there should exist two indices s and t so that ax, y = ax, s + at, y, where ai, j denotes the integer in i-th row and j-th column.

Help Okabe determine whether a given lab is good!

Input
The first line of input contains the integer n (1 ≤ n ≤ 50) — the size of the lab.

The next n lines contain n space-separated integers denoting a row of the grid. The j-th integer in the i-th row is ai, j (1 ≤ ai, j ≤ 105).

Output
Print “Yes” if the given lab is good and “No” otherwise.

You can output each letter in upper or lower case.

Examples
input
3
1 1 2
2 3 1
6 4 1
output
Yes
input
3
1 5 2
1 1 1
1 2 3
output
No
Note
In the first sample test, the 6 in the bottom left corner is valid because it is the sum of the 2 above it and the 4 on the right. The same holds for every number not equal to 1 in this table, so the answer is “Yes”.

In the second sample test, the 5 cannot be formed as the sum of an integer in the same row and an integer in the same column. Thus the answer is “No”.

题目大意:一个棋盘,若每个不为1的格子,都等于同行和同列的两个格子相加,则Yes,否则No
解题思路:暴力

#include 
using namespace std;
const int MAXN=55;
int G[MAXN][MAXN];

int main()
{
    int n;
    while(cin>>n)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                cin>>G[i][j];
            }
        }
        bool flag2=true;
        bool flag1=false;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                flag1=true;
                if(G[i][j]!=1)
                {
                    flag1=false;
                    for(int k=1;k<=n;k++)
                    {
                        if(k==j) continue;
                        for(int kk=1;kk<=n;kk++)
                        {
                            if(kk==i) continue;
                            if(G[i][k]+G[kk][j]==G[i][j])
                            {
                                flag1=true;
                                break;
                            }
                        }
                        if(flag1) break;
                    }
                }
                if(!flag1)
                {
                    flag2=false;
                    break;
                }

            }
            if(!flag2) break;
        }
        if(flag2) cout<<"Yes"<else cout<<"No"<return 0;
}

你可能感兴趣的:(#,水题)