USACO 1.3 Wormholes

看似是水题,反正我用了2小时才AC……愁死了……而且看题解好像很简答的样子,但是我又没看懂啊啊啊啊啊啊啊……


拆点,DFS穷举所有情况,然后tarjan判环…… 顺便复习了tarjan..但是显然判断是否有环有更好的办法。 比如题解的方法……回头研究一下题解的方法,看起来非常简单的样子。

题解穷举所有配对的方法也简单高效……


题解的穷举配对方法和我意思一样,题解的小技巧是没有拆点,而是用2个数组,记录这个点走wormhole所能到的点,和他右方的点分别是谁。然后在判断是否有环的时候,就直接走N步,如果没有环一定走到特殊点了。(因为走到尽头就走到0了,0作为特殊点也不奇怪……因为数组初始化是0 )


/*
TASK:wormhole
LANG:C++
*/
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;

struct point
{
	int x, y;
}a[15];
int n, ans(0);


bool operator < (point A, point B)
{
	if (A.x != B.x)	return A.x < B.x;
	return A.y < B.y;
}

int next[30],vis[15];
int DFN[30], LOW[30], my_stack[30], instack[30];
int flag, Dindex, Stop;

void tarjan(int k)
{
	DFN[k] = LOW[k] =  ++Dindex;
	instack[k] = 1;
	my_stack[++Stop] = k;
	int next_point = next[k];
	if (next_point != -1)
	{
		if (!DFN[next_point])
		{
			tarjan(next_point);	
			LOW[k] = min(LOW[k], LOW[next_point]);
		}else if (instack[next_point] && DFN[k] > LOW[next_point])	LOW[k] = DFN[next_point];
	}
	if (DFN[k] == LOW[k])
	{
		int count = 0, tmp;
		do
		{
			tmp = my_stack[Stop --];	 
			++ count;
			instack[tmp] = 0;
		}while (tmp != k);
		if (count > 1)	flag = 1;
	}
}

void check()
{
	flag = 0;
	memset(DFN, 0, sizeof(DFN));
	memset(LOW, 0, sizeof(LOW));
	memset(my_stack, 0, sizeof(my_stack));
	Dindex = 0;
	Stop = 0;
	for (int i = 0; i != 2 * n; ++ i)
	{
		if (!DFN[i] && !flag)	tarjan(i);
	}
	ans += flag;
}


void dfs(int k)
{
	if (k == n)
	{
		check();	
	
		return;
	}
	if (vis[k] != -1)
	{
		dfs(k + 1);
		return;	
	}
	for (int i = 0; i != n; ++ i)
	{
		if (vis[i] != -1 || k == i)	continue;	
		vis[i] = k;
		vis[k] = i;
		next[k] = i + n;
		next[i] = k + n;
		dfs(k + 1);
		next[k] = -1;
		next[i] = -1;
		vis[i] = -1;
		vis[k] = -1;	
	}
}

int main()
{
	freopen("wormhole.in", "r", stdin);
	freopen("wormhole.out", "w", stdout);
	cin >> n;
	for (int i = 0; i != n; ++ i)	cin >> a[i].y >> a[i].x;
	sort(a, a + n);
	memset(next, -1, sizeof(next));
	memset(vis, -1, sizeof(vis));
	for (int i = 1; i != n; ++ i)
		if (a[i].x == a[i - 1].x)	next[i - 1 + n] = i;
	dfs(1);
	cout<


你可能感兴趣的:(USACO,图论,tarjan)