源码阅读之LinkedHashMap(JDK8)

概述

LinkedHashMap继承自HashMap,实现了Map接口。其内部还维护了一个双向链表,在每次插入数据,或者访问、修改数据时,会增加节点、或调整链表的节点顺序。以决定迭代时输出的顺序。

默认情况,遍历时的顺序是按照插入节点的顺序。这也是其与HashMap最大的区别。
也可以在构造时传入accessOrder参数,使得其遍历顺序按照访问的顺序输出。

因继承自HashMap,所以除了输出无序,其他LinkedHashMap都有,比如扩容的策略,哈希桶长度一定是2的N次方等等。
LinkedHashMap在实现时,就是重写override了几个方法。以满足其输出序列有序的需求。

内部结构

LinkedHashMap的实现主要分两部分,一部分是哈希表,另外一部分是链表。

源码阅读之LinkedHashMap(JDK8)_第1张图片

 

数据结构

    //LinkedHashMap的链表节点继承了HashMap的节点,而且每个节点都包含了前指针和后指针,
    //所以这里可以看出它是一个双向链表
    static class Entry extends HashMap.Node {
        Entry before, after;
        Entry(int hash, K key, V value, Node next) {
            super(hash, key, value, next);
        }
    }

    //双向链表的头指针
    transient LinkedHashMap.Entry head;
    //双向链表的尾指针
    transient LinkedHashMap.Entry tail;
    //默认是false,则迭代时输出的顺序是插入节点的顺序。若为true,则输出的顺序是按照访问节点的顺序。
    //为true时,可以在这基础之上构建一个LruCach
    final boolean accessOrder;

构造函数

//指定初始化时的容量,和扩容的加载因子
         public LinkedHashMap(int initialCapacity, float loadFactor) {
            super(initialCapacity, loadFactor);
            accessOrder = false;
        }
         //指定初始化时的容量
        public LinkedHashMap(int initialCapacity) {
            super(initialCapacity);
            accessOrder = false;
        }

        public LinkedHashMap() {
            super();
            accessOrder = false;
        }

        //利用另一个Map 来构建,
        public LinkedHashMap(Mapextends K, ? extends V> m) {
            super();
            accessOrder = false;
            putMapEntries(m, false);
        }

        //指定初始化时的容量,和扩容的加载因子,以及迭代输出节点的顺序
        public LinkedHashMap(int initialCapacity,
                             float loadFactor,
                             boolean accessOrder) {
            super(initialCapacity, loadFactor);
            this.accessOrder = accessOrder;
        }

构造函数和HashMap相比,就是增加了一个accessOrder参数,用于控制迭代时的节点顺序,默认是false。

覆盖的方法

在HashMap中有三个模版方法,供子类来覆盖,在访问、插入、删除某个节点之后,进行一些特殊处理。

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node p) { }

1. afterNodeAccess方法,会将当前被访问到的节点e,移动至内部的双向链表的尾部。

    void afterNodeAccess(Node e) { // move node to last
        LinkedHashMap.Entry last;//原尾节点
        //如果accessOrder 是true ,且原尾节点不等于e
        if (accessOrder && (last = tail) != e) {
            //节点e强转成双向链表节点p
            LinkedHashMap.Entry p =
                (LinkedHashMap.Entry)e, b = p.before, a = p.after;
            //p现在是尾节点, 后置节点一定是null
            p.after = null;
            //如果p的前置节点是null,则p以前是头结点,所以更新现在的头结点是p的后置节点a
            if (b == null)
                head = a;
            else//否则更新p的前直接点b的后置节点为 a
                b.after = a;
            //如果p的后置节点不是null,则更新后置节点a的前置节点为b
            if (a != null)
                a.before = b;
            else//如果原本p的后置节点是null,则p就是尾节点。 此时 更新last的引用为 p的前置节点b
                last = b;
            if (last == null) //原本尾节点是null  则,链表中就一个节点
                head = p;
            else {//否则 更新 当前节点p的前置节点为 原尾节点last, last的后置节点是p
                p.before = last;
                last.after = p;
            }
            //尾节点的引用赋值成p
            tail = p;
            //修改modCount。
            ++modCount;
        }
    }

2.afterNodeInsertion方法,在哈希表中插入了一个新节点时调用的,它会把链表的头节点删除掉,删除的方式是通过调用HashMap的removeNode方法。

    //回调函数,新节点插入之后回调 , 根据evict 和   判断是否需要删除最老插入的节点。如果实现LruCache会用到这个方法。
    void afterNodeInsertion(boolean evict) { // possibly remove eldest
        LinkedHashMap.Entry first;
        //LinkedHashMap 默认返回false 则不删除节点
        if (evict && (first = head) != null && removeEldestEntry(first)) {
            K key = first.key;
            removeNode(hash(key), key, null, false, true);
        }
    }
    //LinkedHashMap 默认返回false 则不删除节点。 返回true 代表要删除最早的节点。通常构建一个LruCache会在达到Cache的上限是返回true
    protected boolean removeEldestEntry(Map.Entry eldest) {
        return false;
    }

3.afterNodeRemoval方法,把在HashMap中删除的那个键值对一并从链表中删除,保证了哈希表和链表的一致性。 

    //在删除节点e时,同步将e从双向链表上删除
    void afterNodeRemoval(Node e) { // unlink
        LinkedHashMap.Entry p =
            (LinkedHashMap.Entry)e, b = p.before, a = p.after;
        //待删除节点 p 的前置后置节点都置空
        p.before = p.after = null;
        //如果前置节点是null,则现在的头结点应该是后置节点a
        if (b == null)
            head = a;
        else//否则将前置节点b的后置节点指向a
            b.after = a;
        //同理如果后置节点时null ,则尾节点应是b
        if (a == null)
            tail = b;
        else//否则更新后置节点a的前置节点为b
            a.before = b;
    }

添加元素

LinkedHashMap并没有重写任何put方法,但是其重写了构建新节点的newNode()方法,newNode()会在HashMapputVal()方法里被调用。在每次构建新节点时,通过linkNodeLast(p),将新节点链接在内部双向链表的尾部。在putVal()里也调用了afterNodeInsertion方法

    //在构建新节点时,构建的是`LinkedHashMap.Entry` 不再是`Node`.
    Node newNode(int hash, K key, V value, Node e) {
        LinkedHashMap.Entry p =
            new LinkedHashMap.Entry(hash, key, value, e);
        linkNodeLast(p);
        return p;
    }
    //将新增的节点,连接在链表的尾部
    private void linkNodeLast(LinkedHashMap.Entry p) {
        LinkedHashMap.Entry last = tail;
        tail = p;
        //集合之前是空的
        if (last == null)
            head = p;
        else {//将新节点连接在链表的尾部
            p.before = last;
            last.after = p;
        }
    }

删除元素

LinkedHashMap也没有重写remove()方法,因为它的删除逻辑和HashMap并无区别。 但它重写了afterNodeRemoval()这个回调方法,在remove方法里会调用这个afterNodeRemoval方法。

查询元素

    public V get(Object key) {
        Node e;
        if ((e = getNode(hash(key), key)) == null)
            return null;
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }
    public V getOrDefault(Object key, V defaultValue) {
       Node e;
       if ((e = getNode(hash(key), key)) == null)
           return defaultValue;
       if (accessOrder)
           afterNodeAccess(e);
       return e.value;
   }

对比HashMap中的实现,LinkedHashMap只是增加了在成员变量(构造函数时赋值)accessOrder为true的情况下,要去回调void afterNodeAccess(Node e)函数。

遍历

   final class LinkedEntryIterator extends LinkedHashIterator
        implements Iterator> {
        public final Map.Entry next() { return nextNode(); }
    }

    abstract class LinkedHashIterator {
        //下一个节点
        LinkedHashMap.Entry next;
        //当前节点
        LinkedHashMap.Entry current;
        int expectedModCount;

        LinkedHashIterator() {
            //初始化时,next 为 LinkedHashMap内部维护的双向链表的扁头
            next = head;
            //记录当前modCount,以满足fail-fast
            expectedModCount = modCount;
            //当前节点为null
            current = null;
        }
        //判断是否还有next
        public final boolean hasNext() {
            //就是判断next是否为null,默认next是head  表头
            return next != null;
        }
        //nextNode() 就是迭代器里的next()方法 。
        //该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。
        final LinkedHashMap.Entry nextNode() {
            //记录要返回的e。
            LinkedHashMap.Entry e = next;
            //判断fail-fast
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            //如果要返回的节点是null,异常
            if (e == null)
                throw new NoSuchElementException();
            //更新当前节点为e
            current = e;
            //更新下一个节点是e的后置节点
            next = e.after;
            //返回e
            return e;
        }
        //删除方法 最终还是调用了HashMap的removeNode方法
        public final void remove() {
            Node p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

示例

     Map map = new LinkedHashMap<>();
        map.put("1", "a");
        map.put("2", "b");
        map.put("3", "c");
        map.put("4", "d");

        Iterator> iterator = map.entrySet().iterator();
        while (iterator.hasNext()) {
            System.out.println(iterator.next());
        }

        System.out.println("以下是accessOrder=true的情况:");

        map = new LinkedHashMap(10, 0.75f, true);
        map.put("1", "a");
        map.put("2", "b");
        map.put("3", "c");
        map.put("4", "d");
        map.get("2");//2移动到了内部的链表末尾
        map.get("4");//4调整至末尾
        map.put("3", "e");//3调整至末尾
        map.put(null, null);//插入两个新的节点 null
        map.put("5", null);//5
        iterator = map.entrySet().iterator();
        while (iterator.hasNext()) {
            System.out.println(iterator.next());
        }

结果:

1=a
2=b
3=c
4=d
以下是accessOrder=true的情况:
1=a
2=b
4=d
3=e
null=null
5=null

 

你可能感兴趣的:(源码阅读之LinkedHashMap(JDK8))