向AI转型的程序员都关注了这个号????????????
机器学习AI算法工程 公众号:datayx
本文介绍如何制作数据集、修改代码、不加载预权重从头跑自己的训练数据。
本文相关代码 项目获取方式:
关注微信公众号 datayx 然后回复 yolo 即可获取。
AI项目体验地址 https://loveai.tech
下载地址:https://pjreddie.com/projects/pascal-voc-dataset-mirror/
像这样:
像这样:
工具:LabelImg ,链接:https://pan.baidu.com/s/1GJFYcFm5Zlb-c6tIJ2N4hw 密码:h0i5
像这样:
像这样:
test.py代码:
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
VOC2007数据集制作完成,但是,yolo3并不直接用这个数据集,开心么?
需要的运行voc_annotation.py ,classes以三个颜色为例,你的数据集记得改
运行之后,会在主目录下多生成三个txt文件,
像这样:
注明一下,这个文件是用于转换官网下载的.weights文件用的。训练自己的网络并不需要去管他。详见readme
IDE里直接打开cfg文件,ctrl+f搜 yolo, 总共会搜出3个含有yolo的地方,睁开你的卡姿兰大眼睛,3个yolo!!
每个地方都要改3处,filters:3*(5+len(classes));
classes: len(classes) = 3,这里以红、黄、蓝三个颜色为例
random:原来是1,显存小改为0
第七步:修改model_data下的文件,放入你的类别,coco,voc这两个文件都需要修改。
像这样:
为什么说这篇文章是从头开始训练?代码原作者在train.py做了两件事情:
1、会加载预先对coco数据集已经训练完成的yolo3权重文件,
像这样:
但是,你和我想训练的东西,coco里没有啊,所以,就干脆从头开始训练吧
对train.py做了一下修改,直接复制替换原文件就可以了,细节大家自己看吧,直接运行,loss达到10几的时候效果就可以了
参考文章
https://blog.csdn.net/Patrick_Lxc/article/details/80615433
https://blog.csdn.net/u012746060/article/details/81183006
阅读过本文的人还看了以下文章:
【全套视频课】最全的目标检测算法系列讲解,通俗易懂!
《美团机器学习实践》_美团算法团队.pdf
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
python就业班学习视频,从入门到实战项目
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
《深度学习之pytorch》pdf+附书源码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
《Python数据分析与挖掘实战》PDF+完整源码
汽车行业完整知识图谱项目实战视频(全23课)
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!
《神经网络与深度学习》最新2018版中英PDF+源码
将机器学习模型部署为REST API
FashionAI服装属性标签图像识别Top1-5方案分享
重要开源!CNN-RNN-CTC 实现手写汉字识别
yolo3 检测出图像中的不规则汉字
同样是机器学习算法工程师,你的面试为什么过不了?
前海征信大数据算法:风险概率预测
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
VGG16迁移学习,实现医学图像识别分类工程项目
特征工程(一)
特征工程(二) :文本数据的展开、过滤和分块
特征工程(三):特征缩放,从词袋到 TF-IDF
特征工程(四): 类别特征
特征工程(五): PCA 降维
特征工程(六): 非线性特征提取和模型堆叠
特征工程(七):图像特征提取和深度学习
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
蚂蚁金服2018秋招-算法工程师(共四面)通过
全球AI挑战-场景分类的比赛源码(多模型融合)
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
python+flask搭建CNN在线识别手写中文网站
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx
长按图片,识别二维码,点关注