离散数学:每条边的权重均不相同的带权图有唯一最小生成树

假设存在两个最小生成树T,T',其边按权重升序排列分别为{e1, e2, ..., en}和{e1', e2', ..., en'}。

那么存在一个最小的k使得weight(ek)!=weight(ek')。(也即e1=e1', e2=e2', ... ek-1=ek-1')

此时T'中没有ek。不妨设w(ek){e1', e2', ..., en'}之外的边(否则在T中就会有这样的环)。删去任一这样的边,即可得到一个更小的生成树,这与T'是最小生成树矛盾。

由上,题设得证。

 

转载于:https://www.cnblogs.com/KakagouLT/p/9216441.html

你可能感兴趣的:(离散数学:每条边的权重均不相同的带权图有唯一最小生成树)