- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- 2024年12月CCF-GESP编程能力等级认证C++编程四级真题解析
前网易架构师-高司机
c++开发语言CCF-GESP
四级真题的难度:一、总体难度评价CCF-GESP编程能力等级认证C++四级真题的难度通常被认为相对较高。它不仅要求考生具备扎实的C++编程基础,还需要考生掌握一定的算法和数据结构知识,以及良好的问题解决能力。二、具体难度分析理论知识考察:单选题和判断题中,会涉及C++语言的理论基础知识,如数组的存储原理、函数的各种传参方式、指针、引用等。这些题目要求考生对C++语言有深入的理解。编程技能考察
- 用 Verilog 实现 0 到 18 计数器:从原理到实践的全解析
君临天下.鑫
modelsim波形仿真verilogfpga开发课程设计经验分享笔记编辑器
在数字电路设计中,计数器是极为重要的基础部件,广泛应用于各类数字系统。本次实验聚焦于设计一个从0到18计数的计数器,通过深入探索计数器的工作原理、利用组合逻辑控制计数范围,进一步加深对数字电路和Verilog语言的理解与应用。一、实验目的理解计数器通用原理:全面掌握计数器的基本工作原理,包括计数的方式、状态的转换以及与外部信号的交互等,为设计特定功能的计数器奠定理论基础。运用组合逻辑控制计数范围:
- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
应用开发
引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个二维矩阵,每个元素代表一个像素的灰度值或颜色值。在HarmonyNex
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 系统架构设计师【第5章】: 软件工程基础知识 (核心总结)
数据知道
系统架构软件工程软考高级系统架构设计师软件工程基础
文章目录5.1软件工程5.1.1软件工程定义5.1.2软件过程模型5.1.3敏捷模型5.1.4统一过程模型(RUP)5.1.5软件能力成熟度模型5.2需求工程5.2.1需求获取5.2.2需求变更5.2.3需求追踪5.3系统分析与设计5.3.1结构化方法5.3.2面向对象方法5.4软件测试5.4.1测试方法5.4.2测试阶段5.5净室软件工程5.5.1理论基础5.5.2技术手段5.5.3应用与缺点5
- HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发引言在音视频处理领域,实时性和性能是关键。随着HarmonyNext生态系统的不断发展,开发者可以利用ArkTS语言构建高性能的音视频处理应用。本文将深入探讨如何利用ArkTS开发一个音视频处理应用,重点介绍音频处理、视频编解码以及实时流媒体传输的实现。我们将从理论基础出发,逐步构建一个完整的应用,并通过优化技巧提升性能。1.音视
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。1.图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个
- python自制MBTI 16型人格测试1.0
LHTZ
python开发语言娱乐
什么是16型人格测试16型人格测试也叫MBTI(Myers-BriggsTypeIndicator)测试,它是一种基于心理学理论的人格测评工具。这个理论最初是由凯瑟琳・库克・布里格斯(KatharineCookBriggs)和她的女儿伊莎贝尔・布里格斯・迈尔斯(IsabelBriggsMyers)在20世纪40年代开发的。它的理论基础是瑞士心理学家卡尔・荣格(CarlJung)的心理类型理论。MB
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- 【图论】——理论基础总结
weixin_47868976
图论
图论这一章尤其需要图例进行说明,方便理解,对于作者来说很费时间,本文主要为自己复习方便,所以并不会写的非常详细,见谅。图论图的基本概念基本要素:边节点两点连成线,多个点连成的线称为图。当然也可以就一个节点,或者啥也没有(空图)。图的种类方向的概念根据边有无方向划分为:无向图有向图权重的概念边可以有权重,根据有无权重和方向:加权有向图加权无向图度的概念针对无向图,对于某节点,有几条边连着该节点,就称
- 如何增强机器学习基础,提升大模型面试通过概率
weixin_40941102
机器学习面试人工智能
我的好朋友没有通过面试所以我给我的好朋友准备了这一篇学习路线随着大模型(如Transformer、GPT-4、LLaMA等)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中的广泛应用,AI行业的招聘竞争愈发激烈。面试官不仅要求候选人熟练使用深度学习框架(如PyTorch、TensorFlow),还希望他们具备扎实的机器学习理论基础、算法实现能力和实际问题解决经验。本文将从机器学习基础入手
- 【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
猿享天开
人工智能数学基础专讲分类数据挖掘人工智能贝叶斯数学
深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用贝叶斯理论(BayesianTheory)是概率论和统计学中的一个重要分支,它以托马斯·贝叶斯(ThomasBayes)命名,主要关注如何根据新的证据更新对某一事件的信念。贝叶斯定理作为贝叶斯理论的核心,在机器学习、数据分析、决策科学等多个领域中具有广泛的应用。本文将深入探讨贝叶斯定理的理论基础、数学表达及其在分类和预测中的应用,辅以实例和
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- Python构建基于协同过滤的推荐系统:从理论到实践
清水白石008
pythonPython题库python开发语言
构建基于协同过滤的推荐系统:从理论到实践推荐系统在现代应用中无处不在,从电商平台的商品推荐到流媒体服务的内容推荐,推荐系统极大地提升了用户体验。本文将详细介绍如何使用Python构建一个基于协同过滤算法的推荐系统,内容涵盖理论基础、数据处理、算法实现以及实际应用。一、推荐系统概述推荐系统主要分为三类:基于内容的推荐、基于协同过滤的推荐和混合推荐系统。本文重点介绍基于协同过滤的推荐系统。协同过滤(C
- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- 6G天地一体化信息网络内生安全技术
罗思付之技术屋
网络通信安全及科学技术专栏安全
摘要:6G天地一体化信息网络面临因网络高度暴露、节点高速运动、计算资源受限等特点带来的安全挑战,且新架构、新应用、新技术也将引入新的安全问题,亟须提出普适性安全理论,一体化解决其功能安全及网络安全问题。为此,首先阐述网络空间内生安全主要理论基础,提出6G天地一体化信息网络内生安全架构;然后,在网络空间内生安全理论的指导下,从星载系统、6G地面移动网、星地链路探讨相关安全理论与技术构想;最后,从安全
- Day55 图论part05
2401_83448199
图论
并查集理论基础并查集理论基础很重要,明确并查集解决什么问题,代码如何写,对后面做并查集类题目很有帮助。并查集理论基础|代码随想录总结1.并查集主要有两个功能:主要就是集合问题寻找根节点,函数:find(intu),也就是判断这个节点的祖先节点是哪个将两个节点接入到同一个集合,函数:join(intu,intv),将两个节点连在同一个根节点上判断两个节点是否在同一个集合,函数:isSame(intu
- 图论理论基础和存储方式的实现
Amazing_snack
数据结构与算法图论图论
图论1图论(Graphtheory)是数学的一个分支,图是图论的主要研究对象。图(Graph)是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。1、图的理论基础图(Graph)用大写字母(如GGG)表示图,通常记为G=(V,E)G=(V,E)G=(V,E),其中VVV表示顶点集,EEE表
- 代码随想录算法训练营第四十八天|583. 两个字符串的删除操作,72. 编辑距离
丁希希哇
力扣算法刷题算法面试python力扣
系列文章目录代码随想录算法训练营第一天|数组理论基础,704.二分查找,27.移除元素代码随想录算法训练营第二天|977.有序数组的平方,209.长度最小的子数组,59.螺旋矩阵II代码随想录算法训练营第三天|链表理论基础,203.移除链表元素,707.设计链表,206.反转链表代码随想录算法训练营第四天|24.两两交换链表中的节点,19.删除链表的倒数第N个节点,面试题02.07.链表相交,14
- 工业级Pandas性能优化:Dask/Modin实战教程
闲人编程
Python数据分析实战精要pandas性能优化分布式GPU加速DaskModin数据分析
目录工业级Pandas性能优化:Dask/Modin实战教程1.引言与背景1.1Pandas的局限性1.2分布式计算与GPU加速的需求1.3Dask与Modin简介2.数据集介绍3.工业级数据处理理论基础3.1内存优化3.2计算并行化3.3GPU加速4.实验环境与依赖库5.数据处理与分析流程6.Dask实战:分布式计算与GPU加速7.Modin实战:简洁易用的并行Pandas接口8.数据分析领域的
- UniAPM智能运维平台
UniAPM运维管理软件监控指标体系是一套面向业务服务、层次化、可量化的监控指标体系。该体系是以ITIL为理论基础,实现IT管理与业务服务的融合。从业务的视角来重新定位企业的IT系统,以可视化方式为管理者提供一览式的IT服务状况,确保IT服务可管理、可测量。项目地址:Github、国内Gitee演示地址:http://silianpan.cn/apm/演示账号:admin密码:admin用户手册:
- 代码随想录第十天|栈与队列part01--栈与队列理论基础、225.用队列实现栈、232.用栈实现队列、20.有效的括号、1047.删除字符串中的所有相邻重复项
Aqua Cheng.
代码随想录算法训练营一刷java数据结构算法
资源引用:栈与队列理论基础(栈与队列理论基础)leetcode题目:225.用队列实现栈(225.用队列实现栈)232.用栈实现队列(232.用栈实现队列)20.有效的括号(20.有效的括号)1047.删除字符串中的所有相邻重复项(1047.删除字符串中的所有相邻重复项)久违碎碎念:“放弃不可怕,可怕的是没有继续前行的勇气。”有朋友在csdn上催问我怎么没有更新了?对此我感到一些局促和羞愤——我忙
- 多独立样本秩检验:Kruskal-Wallis检验
木子算法
非参数统计非参数检验概率论统计
多独立样本秩检验:Kruskal-Wallis检验的理论与实践一、引言在统计学中,当数据不满足正态分布或方差齐性假设时,传统的参数检验(如方差分析ANOVA)可能失效。此时,非参数检验方法(如秩检验)成为更可靠的选择。本文将详细介绍多独立样本秩检验的核心方法——Kruskal-Wallis检验,包括其理论基础、公式推导、案例分析及Python实现。二、理论基础1.问题定义假设我们有kkk个独立样本
- 【MATLAB源码-第164期】基于matlab的轴承故障三种谱图:细化谱,功率谱,倒谱对比分析仿真。
Matlab程序猿小助手
通信原理matlab开发语言算法机器人人工智能机器学习计算机视觉
操作环境:MATLAB2022a1、算法描述轴承故障分析是一种重要的维护和监控手段,能够帮助工程师及时发现和解决轴承在运行中可能遇到的各种问题。在轴承故障诊断中,通常会使用到三种谱图分析方法:细化谱(FineSpectrum)、功率谱(PowerSpectrum)和倒谱(Cepstrum)分析。这三种方法各有特点,适用于不同的故障类型和分析场景。以下是对这三种谱图的详细描述。细化谱分析理论基础细化
- 【无标题】四色拓扑模型与宇宙历史重构的猜想框架
2301_81062744
拓扑学
###四色拓扑模型与宇宙历史重构的猜想框架---####**一、理论基础:四色拓扑与时空全息原理的融合**1.**宇宙背景信息的拓扑编码**-**大尺度结构网络**:将星系团映射为四色顶点,纤维状暗物质结构作为边,构建宇宙尺度平面图\(\mathcal{G}_{\text{cosmo}}=(V_{\text{galaxy}},E_{\text{filament}})\)。-**CMB极化图谱**:
- OpenGL 3D纹理
令狐掌门
C++OpenGL3d性能优化OpenGL3D
理论基础3D纹理(也称为体积纹理)是纹理映射的扩展,从2D平面扩展到3D空间。与2D纹理不同,3D纹理在三个维度上存储数据(宽度、高度和深度),允许在整个3D空间中采样,而不仅仅是在平面上。3D纹理的主要特性和用途:体积数据表示:用于表示完整的3D数据集,如医学扫描(CT、MRI)、气象数据等空间采样:允许在3D空间中的任意位置进行纹理采样层次细节:支持类似2D纹理的MipMap功能,但在三维空间
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr