python机器学习库sklearn——朴素贝叶斯分类器

分享一个朋友的人工智能教程。零基础!通俗易懂!风趣幽默!还带黄段子!大家可以看看是否对自己有帮助:点击打开

docker/kubernetes入门视频教程


全栈工程师开发手册 (作者:栾鹏)
python数据挖掘系列教程

文档贝叶斯分类器的相关的知识内容可以参考
http://blog.csdn.net/luanpeng825485697/article/details/78769233

在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

高斯朴素贝叶斯

GaussianNB 实现了运用于分类的高斯朴素贝叶斯算法。特征的可能性(即概率)假设为高斯分布:

P(xi

你可能感兴趣的:(机器学习系列课程,快速学习实战应用,python系列课程,快速学习实战应用)