使用方法
opt = tf.tf.train.GradientDescentOptimizer(learning_rate=0.1)
train_op = opt.minimize(loss)
minimize的内部存在两个操作:(1)计算各个变量的梯度 (2)用梯度更新这些变量的值
主要的参数说明:
loss: `Tensor` ,需要优化的损失;
var_list: 需要更新的变量(tf.Varialble)组成的列表或者元组,默认值为`GraphKeys.TRAINABLE_VARIABLES`,即tf.trainable_variables()
注意:
1、Optimizer.minimize(loss, var_list)中,计算loss所涉及的变量(假设为var(loss))包含在var_list中,也就是var_list中含有多余的变量,并不 影响程序的运行,而且优化过程中不改变var_list里多出变量的值;
2、若var_list中的变量个数少于var(loss),则优化过程中只会更新var_list中的那些变量的值,var(loss)里多出的变量值 并不会改变,相当于固定了网络的某一部分的参数值。
with tf.Session() as sess:
tf.global_variables_initializer().run()
#在for循环内进行30000训练
for i in range(training_steps):
sess.run(train_op, feed_dict={x: data, y_: label})
#训练30000轮,但每隔2000轮就输出一次loss的值
if i % 2000 == 0:
loss_value = sess.run(loss, feed_dict={x: data, y_: label})
print("After %d steps, loss_value is: %f" % (i,loss_value))
下面是将上面加蓝色代码注释掉运行的结果如下
After 0 steps, loss_value is: 0.512605
After 2000 steps, loss_value is: 0.512605
After 4000 steps, loss_value is: 0.512605
After 6000 steps, loss_value is: 0.512605
After 8000 steps, loss_value is: 0.512605
After 10000 steps, loss_value is: 0.512605
After 12000 steps, loss_value is: 0.512605
After 14000 steps, loss_value is: 0.512605
After 16000 steps, loss_value is: 0.512605
After 18000 steps, loss_value is: 0.512605
After 20000 steps, loss_value is: 0.512605
After 22000 steps, loss_value is: 0.512605
After 24000 steps, loss_value is: 0.512605
After 26000 steps, loss_value is: 0.512605
After 28000 steps, loss_value is: 0.512605
下面是没注释的完整代码跑出来的结果
import tensorflow as tf
import numpy as np
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
#定义训练轮数
training_steps = 30000
#定义输入的数据和对应的标签并在for循环内进行填充
data = []
label = []
for i in range(200):
x1 = np.random.uniform(-1, 1)
x2 = np.random.uniform(0, 2)
#这里对产生的x1和x2进行判断,如果产生的点落在半径为1的圆内,则label值为0
#否则label值为1
if x1**2 + x2**2 <= 1:
data.append([np.random.normal(x1, 0.1),np.random.normal(x2,0.1)])
label.append(0)
else:
data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)])
label.append(1)
#numpy的hstack()函数用于在水平方向将元素堆起来
#函数原型numpy.hstack(tup),参数tup可以是元组、列表、或者numpy数组,
#返回结果为numpy的数组。reshape()函数的参数-1表示行列进行翻转。
#这样处理的结果为data变成了200x2大小的数组,而label是100x1
data = np.hstack(data).reshape(-1,2)
label = np.hstack(label).reshape(-1, 1)
#定义完成前向传播的隐层
def hidden_layer(input_tensor,weight1,bias1,weight2,bias2,weight3,bias3):
layer1=tf.nn.relu(tf.matmul(input_tensor,weight1)+bias1)
layer2 = tf.nn.relu(tf.matmul(layer1, weight2) + bias2)
return tf.matmul(layer2,weight3)+bias3
x = tf.placeholder(tf.float32, shape=(None, 2),name="x-input")
y_ = tf.placeholder(tf.float32, shape=(None, 1),name="y-output")
#定义权重参数和偏置参数
weight1 = tf.Variable(tf.truncated_normal([2,10],stddev=0.1))
bias1 = tf.Variable(tf.constant(0.1, shape=[10]))
weight2 = tf.Variable(tf.truncated_normal([10,10],stddev=0.1))
bias2 = tf.Variable(tf.constant(0.1, shape=[10]))
weight3 = tf.Variable(tf.truncated_normal([10,1],stddev=0.1))
bias3 = tf.Variable(tf.constant(0.1, shape=[1]))
#用len()函数计算data数组的长度
sample_size = len(data)
#得到隐层前向传播结果
y= hidden_layer(x,weight1,bias1,weight2,bias2,weight3,bias3)
#自定义的损失函数。pow()函数用于计算幂函数,原型为pow(x,y,name=None)
#返回结果为x的y次幂,这里返回结果为(y_-y)^2用于衡量计算值与实际值的差距
error_loss = tf.reduce_sum(tf.pow(y_ - y, 2)) / sample_size
tf.add_to_collection("losses", error_loss) #加入集合的操作
#在权重参数上实现L2正则化
regularizer = tf.contrib.layers.l2_regularizer(0.01)
regularization = regularizer(weight1)+regularizer(weight2)+regularizer(weight3)
tf.add_to_collection("losses",regularization) #加入集合的操作
#get_collection()函数获取指定集合中的所有个体,这里是获取所有损失值
#并在add_n()函数中进行加和运算
loss = tf.add_n(tf.get_collection("losses"))
#定义一个优化器,学习率为固定为0.01,注意在实际应用中这个学习率数值应该大于0.01
train_op = tf.train.AdamOptimizer(0.01).minimize(loss)
with tf.Session() as sess:
tf.global_variables_initializer().run()
#在for循环内进行30000训练
for i in range(training_steps):
sess.run(train_op, feed_dict={x: data, y_: label})
#训练30000轮,但每隔2000轮就输出一次loss的值
if i % 2000 == 0:
loss_value = sess.run(loss, feed_dict={x: data, y_: label})
print("After %d steps, loss_value is: %f" % (i,loss_value))
结果如下:
After 0 steps, loss_value is: 0.403034
After 2000 steps, loss_value is: 0.071240
After 4000 steps, loss_value is: 0.071202
After 6000 steps, loss_value is: 0.071197
After 8000 steps, loss_value is: 0.071181
After 10000 steps, loss_value is: 0.070808
After 12000 steps, loss_value is: 0.070798
After 14000 steps, loss_value is: 0.070798
After 16000 steps, loss_value is: 0.070808
After 18000 steps, loss_value is: 0.070803
After 20000 steps, loss_value is: 0.070796
After 22000 steps, loss_value is: 0.070794
After 24000 steps, loss_value is: 0.070800
After 26000 steps, loss_value is: 0.070800
After 28000 steps, loss_value is: 0.070800
Process finished with exit code 0
参考博客https://blog.csdn.net/weixin_40597170/article/details/96012213
https://blog.csdn.net/Huang_Fj/article/details/102688509